Skip to main content

Advertisement

Log in

Identification of N-glycosylation sites of the murine neural cell adhesion molecule NCAM by MALDI-TOF and MALDI-FTICR mass spectrometry

  • Spezial Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mass spectrometry has been shown in recent years to be a powerful tool to determine accurate molecular masses and sequences of peptides and proteins and post-translational modifications such as glycosylation, phosphorylation, and sulfation. For glycosylation, it has been increasingly recognized to be of pivotal importance to identify whether potential glycosylation sites are actually modified by glycans, because functions of proteins may be modulated or depend on the presence of glycans at specific sites. Several recent reports have established that mass spectrometric techniques such as matrix-assisted laser desorption/ionization or electrospray ionization mass spectrometry (MALDI-TOF or ESI-MS, respectively) with or without preceding HPLC and in combination with PNGase F treatment are suited to analyze whether consensus sequences for N-glycosylation are glycosylated or not. Here we report the mass spectrometric analysis of the six potential N-glycosylation sites of the neural cell adhesion molecule NCAM from adult mouse brain. Unmodified peptides and glycopeptides each carrying a single glycosylation site were generated from NCAM by AspN and trypsin treatment and submitted to reversed-phase HPLC with or without prior enzymatic release of N-glycans. The resulting peptides were analyzed by MALDI-TOF-MS. In addition, high-resolution Fourier transform–ion cyclotron resonance (MALDI-FTICR) mass spectrometry was performed after in-gel deglycosylation and subsequent trypsin digestion. By using these procedures all six consensus sequences were shown to be glycosylated; the observation of an unmodified peptide with the consensus sequence N-1 indicates only partial glycosylation at this site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A,B
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

amu:

atomic mass units

AspN:

endoproteinase AspN

CAM:

cell adhesion molecule

ESI:

electrospray ionization

FTICR:

Fourier transform–ion cyclotron resonance

IgSF:

immunoglobulin superfamily

MALDI-TOF:

matrix-assisted laser desorption ionization–time of flight

MS:

mass spectrometry

NCAM:

neural cell adhesion molecule

PNGase F:

peptide-N 4-(N-acetyl-β-glucosaminyl)asparagine amidase

PSA:

polysialic acid

TFA:

trifluoroacetic acid

References

  1. Edelman GM, Crossin KL (1991) Annu Rev Biochem 60:55–90

    Article  Google Scholar 

  2. Horstkorte R, Schachner M, Magyar JP, Vorherr T, Schmitz B (1993) J Cell Biol 121:1409–1421

    CAS  PubMed  Google Scholar 

  3. Cole GJ, Akeson R (1989) Neuron 2:1157–1165

    CAS  PubMed  Google Scholar 

  4. Probstmeier R, Pesheva P (1999) Prog Neurobiol 58:163–184

    Article  CAS  PubMed  Google Scholar 

  5. Brinkman-Van der Linden EC, Varki A (2000) J Biol Chem 275:8625–32

    Article  PubMed  Google Scholar 

  6. Jie C, Zipser B, Jellies J, Johansen KM, Johansen J (1999) Biochim Biophys Acta 1452:161–171

    Article  CAS  PubMed  Google Scholar 

  7. Cunningham BA, Hemperley JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM (1987) Science 236:799–806

    CAS  PubMed  Google Scholar 

  8. Sorkin BC, Hoffman S, Edelman GM, Cummingham BA (1984) Science 225:1475-1478

    Google Scholar 

  9. Schachner M (1997) Curr Opin Cell Biol 9:627–634

    Article  CAS  PubMed  Google Scholar 

  10. Little EB, Edelmann GM, Cunningham BA (1998) Cell Adh Commun 6:415–430

    CAS  Google Scholar 

  11. Walsh FS, Parekh RB, Moore SE, Dickson G, Barton CH, Gower HJ, Dwek RA, Rademacher TW (1989) Development 105:803–811

    CAS  PubMed  Google Scholar 

  12. Barthels D, Vopper G, Boned A, Cremer H, Wille W (1992) Eur J Neurosci 4:327–337

    PubMed  Google Scholar 

  13. Frelinger AL III, Rutishauser A (1986) J Cell Biol 103:1729–1737

    CAS  PubMed  Google Scholar 

  14. Nelson RW, Bates PA, Rutishauser U (1995)J Biol Chem 270:17171–17179

    Article  CAS  PubMed  Google Scholar 

  15. Liedtke S, Geyer H, Wuhrer M, Geyer R, Frank G, Gerardy-Schahn R, Zähringer U, Schachner M (2001) Glycobiology 11:373–384

    Article  CAS  PubMed  Google Scholar 

  16. von der Ohe M, Wheeler SF, Wuhrer M, Harvey DJ, Liedtke S, Mühlenhoff M, Gerardy-Schahn R, Geyer H, Dwek RA, Geyer R, Wing DR, Schachner M (2002) Glycobiology 12:47–63

    Article  PubMed  Google Scholar 

  17. Wuhrer M, Geyer H, von der Ohe M, Gerardy-Schahn R, Schachner M, Geyer R (2003) Biochimie 85:207–218

    Article  CAS  PubMed  Google Scholar 

  18. Schachner M, Martini R (1995) TINS 18:183–191

    Article  CAS  PubMed  Google Scholar 

  19. Cremer H, Chazal G, Lledo PM, Rougon G, Montaron MF, Mayo W, Le Moal M, Abrous DN (2000) J Dev Neurosci 18:213–220

    Article  CAS  Google Scholar 

  20. Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984) Nature 311:153–155

    CAS  PubMed  Google Scholar 

  21. Rathjen FG, Schachner M (1984) EMBO J 3:1–10

    CAS  PubMed  Google Scholar 

  22. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Anal Chem 68:850-858

    Article  CAS  PubMed  Google Scholar 

  23. Baykut G, Jertz R, Witt M (2000) Rapid Commun Mass Spectrom 14:1238–1247

    Article  CAS  PubMed  Google Scholar 

  24. Damoc E, Youhnovski N, Crettaz D, Tissot J-D, Przybylski M (2003) Proteomics 3:1425–1433

    Google Scholar 

  25. Bauer SH, Wiechers MF, Bruns K, Przybylski M, Stuermer CA (2001) Anal Biochem 298:25–31

    Article  CAS  PubMed  Google Scholar 

  26. Denzinger T (1999) Thesis, University of Konstanz

  27. Albach C (1999) Thesis, University of Bonn

  28. Harvey JD (2003) Methods Mol Biol 211:371–383

    CAS  PubMed  Google Scholar 

  29. Schmidt P, Youhnovski N, Daiber A, Balan A, Arsic M, Bachschmid M, Przybylski M, Ullrich V (2003) J Biol Chem 278:12813–12819

    Article  CAS  PubMed  Google Scholar 

  30. Windberg E, Hudecz F, Marquardt A, Sebestyen F, Kiss A, Bosze S, Medzihradszky-Schweiger H, Przybylski M (2002) Rapid Commun Mass Spectrom 16:834–839

    Article  CAS  PubMed  Google Scholar 

  31. Denzinger T, Diekmann H, Bruns K, Laessing U, Stuermer CA, Przybylski M (1999) J Mass Spectrom 34:435–446

    Article  CAS  PubMed  Google Scholar 

  32. Kawasaki N, Ohta M, Hyuga S, Hyuga M, Hayakawa T (2000) Anal Biochem 285:82–91

    Article  CAS  PubMed  Google Scholar 

  33. Wang F, Nakouzi A, Angeletti RH, Casadevall A (2003) Anal Biochem 314:266–280

    Article  CAS  PubMed  Google Scholar 

  34. Zhen Y, Caprioli RM, Staros JV (2003) Biochem 42:5478–5492

    Article  CAS  Google Scholar 

  35. Hoffmann A, Nimtz M, Getzlaff R, Conradt HS (1995) FEBS Lett 359:164–168

    Article  CAS  PubMed  Google Scholar 

  36. Zamze S, Harvey DJ, Chen YJ, Guile GR, Dwek RA, Wing DR (1998) Eur J Biochem 258:243–270

    Article  CAS  PubMed  Google Scholar 

  37. Chen YJ, Wing DR, Guile GR, Dwek RA, Harvey DJ, Zamze S (1998) Eur J Biochem 251:691–703

    Article  CAS  PubMed  Google Scholar 

  38. Zamze S, Harvey DJ, Pesheva P, Mattu TS, Schachner M, Dwek RA, Wing DR (1999) Glycobiol 9:823–831

    Article  CAS  Google Scholar 

  39. Albach C, Klein RA, Schmitz B (2001) Biol Chem 382:187-194

    CAS  PubMed  Google Scholar 

  40. Ohl C, Albach C, Altevogt P, Schmitz B (2003) Biochimie 85:565–573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bernhard Gehrig for the preparation of NCAM for the MALDI-FTICR-MS analysis, and Ursula Munzel for expert secretarial assistance. The expert assistance of Nikolay Youhnovski with the FTICR-MS is gratefully acknowledged. This work has been supported by grants from the Deutsche Forschungsgemeinschaft (SFB 284/A8, B.S., and Biopolymer-MS/Pr-175/4, M.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albach, C., Damoc, E., Denzinger, T. et al. Identification of N-glycosylation sites of the murine neural cell adhesion molecule NCAM by MALDI-TOF and MALDI-FTICR mass spectrometry. Anal Bioanal Chem 378, 1129–1135 (2004). https://doi.org/10.1007/s00216-003-2383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2383-2

Keywords

Navigation