Skip to main content
Log in

Chemical and physical factors affecting the extractability of methidathion from soil samples.

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Determination of methidathion in soil samples using Soxhlet extraction has been studied. Several factors were investigated for their effect on methidathion recovery. Some were related to the extraction procedure, for example solvent type used for the extraction (acetone or hexane/toluene), extraction time, soil humidity, and type of sterilisation system employed. Other factors tested included the addition of organic matter to the soil, for example urban sewage sludge and the cationic surfactant TDTMA. Experimental designs were used to determine the effects of the different factors. Acetone resulted in higher recoveries and was less affected by the presence of water. Autoclaving was the most appropriate sterilisation method. Thimerosal resulted in a decrease in insecticide recovery. Methidathion recovery increased as the amount of cationic surfactant was increased, but decreased as the amount of sewage sludge added to the soil was increased. In general, because the factors studied were not always independent of each other, a clear description of the methodology used is needed when analysing pollutants in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tomlin CDS (1997) (ed) The pesticide manual, 11th edn. British Crop Protection Council, Farnham, Surrey, UK, pp 811–813

  2. Fernández-Alba AR, Agüera A, Piedra L, Contreras M (2001) Phytoma 129:28–32

    Google Scholar 

  3. Hernández F, Serrano R, Miralles MC, Font N (1996) Chromatographia 42:151–158

    Google Scholar 

  4. Garrido A, Martínez JL, Pablos MC (2001) Phytoma 129:75–77

    Google Scholar 

  5. Weber EJ, Wolfe NL (1987) Environ Toxicol Chem 6:911–919

    CAS  Google Scholar 

  6. Tuominen L, Kairesalo T, Hartikainen H (1994) Appl Environ Microbiol 60:3454–3457

    Google Scholar 

  7. Berger BM, Wolfe NL (1996) Environ Toxicol Chem 15:1500–1507

    CAS  Google Scholar 

  8. Getzin LW, Rosefield I (1968) J Agric Food Chem 16:598–601

    CAS  Google Scholar 

  9. Guth JA (1981) Experimental approaches to studying the fate of pesticides in soil. In: Hutson DH, Roberts TR (eds) Progress in pesticide biochemistry, Volume 1. Wiley, chap 2, pp 100–114

  10. Wolf DC, Dao TH, Scott HD, Lavy TL (1989) J Environ Qual 18:39–44

    CAS  Google Scholar 

  11. Aronstein BN, Calvillo YM, Alexander M (1991) Environ Sci Technol 25:1728–1731

    CAS  Google Scholar 

  12. Dao TH, Marx DB, Lavy TL, Dragun J (1982) Soil Sci Soc Am J 46:963–969

    CAS  Google Scholar 

  13. Bellin CA, O’Connor GA, Jin Y (1990) J Environ Qual 19:603–608

    CAS  Google Scholar 

  14. Di Vincenzo JP, Dentel SK (1996) J Environ Qual 25:1193–1202

    Google Scholar 

  15. Sánchez-Camazano M, Iglesias-Jiménez E, Sánchez-Martín MJ (1997) Chemosphere 35:3003–3012

    Article  Google Scholar 

  16. Sánchez-Camazano M, Sánchez-Martín MJ, Delgado-Pascual R (2000) J Agric Food Chem 48:3018–3026

    Article  PubMed  Google Scholar 

  17. Romero E, Dios G, Mingorance MD, Matallo MB, Peña A, Sánchez-Rasero F (1998) Chemosphere 37:577–589

    Article  CAS  Google Scholar 

  18. Romero E, Matallo MB, Peña A, Sánchez-Rasero F, Schmitt-Kopplin P, Dios G (2001) Environ Pollut 11:209–215

    Article  Google Scholar 

  19. Conte A, Milani R, Morali G, Aballe F (1997) J Chromatogr A 765:121–125

    Article  CAS  Google Scholar 

  20. Zuloaga O, Etxebarria N, Fernández LA, Madariaga JM (2000) Fresenius J Anal Chem 367:733-737

    Google Scholar 

  21. Berset JD, Ejem M, Holzer R, Lischer P (1999) Anal Chim Acta 383:263–275

    Article  CAS  Google Scholar 

  22. Berglöf T, Koskinen WC, Kylin H, Moorman TB (2000) Pestic Manage Sci 56:927–931

    Article  Google Scholar 

  23. Zhou M, Trubey RK, Keil ZO, Sparks DL (1997) Environ Sci Technol 31:1934–1939

    Article  CAS  Google Scholar 

  24. Wei M-C, Jen J-F (2003) J Chromatogr A 1012:111–118

    Article  CAS  PubMed  Google Scholar 

  25. Sánchez L, Romero E, Sánchez Rasero F, Dios G, Peña A (2003) Pestic Manage Sci 59:859–864

    Google Scholar 

  26. Zehnder HJ (1974) Alimenta 13:21–24

    Google Scholar 

  27. Sánchez L, Mingorance MD, Peña A (2000) Analyst 125:1199–1203

    Article  Google Scholar 

  28. Fresquez PR, Francis RE, Dennis GL (1990) J Environ Qual 19:324–329

    Google Scholar 

  29. de la Colina C, Peña A, Mingorance MD, Sánchez Rasero F (1996) J Chromatogr A 733:275–281

    Article  Google Scholar 

  30. Cuadros Rodríguez L, García Campaña AM, Jiménez Linares C, Román Ceba M (1993) Anal Lett 26:1243–1258

    Google Scholar 

  31. Egizabal A, Zuloaga O, Etxebarria N, Fernández LA, Madariaga JM (1998) Analyst 123:1679–1684

    Article  CAS  Google Scholar 

  32. Hillaert S, Vander Heyden Y, van den Bossche W (2002) J Chromatogr A 978:231–242

    Article  CAS  PubMed  Google Scholar 

  33. Huang LQ, Pignatello JJ (1990) J AOAC 73:443–446

    CAS  Google Scholar 

  34. Laabs V, Amelung W, Zech W (1999) J Environ Qual 28:1778–1786

    CAS  Google Scholar 

  35. Matallo M, Romero E, Sánchez-Rasero F, Peña A, Dios G (1998) J Environ Sci Health B 33:51–66

    Google Scholar 

  36. Iglesias-Jiménez E, Poveda E, Sánchez-Martín MJ, Sánchez-Camazano M (1997) Arch Environ Contam Toxicol 33:117–124

    Article  PubMed  Google Scholar 

  37. de Andréa MM, Papini S, Nakagawa LE (2001) J Environ Sci Health B 36:87–93

    PubMed  Google Scholar 

  38. Mulligan CN, Yong RN, Gibbs BF (2001) Eng Geol 60:371–380

    Article  Google Scholar 

  39. Carabias-Martínez R, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, García-Pinto C, Fernández-Laespada E (2000) J Chromatogr A 902:251–265

    PubMed  Google Scholar 

Download references

Acknowledgements

This work takes part of a national project (AMB-1222) financed by CICYT. LSM thanks the grant from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, L., Mingorance, M.D. & Peña, A. Chemical and physical factors affecting the extractability of methidathion from soil samples.. Anal Bioanal Chem 378, 764–769 (2004). https://doi.org/10.1007/s00216-003-2378-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-003-2378-z

Keywords

Navigation