Skip to main content
Log in

Evaluation of the donor character for urea-based foldamers throughout the empirical estimation of \(pK_a\)

  • Research
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

H-bond donor capabilities are a key factor for (thio)urea-based helical foldamers to catalyze challenging enantioselective C–C bond-forming reactions. In this investigation, we have characterized that property by computing the \(pK_a\) of the (thio)ureas in the reactive site of several foldamers. \(pK_a\) estimations were carried out employing an empirical method, alternative to traditional thermodynamic cycles which avoids using the free energy of the proton. It was found that the acidity increases with the length of the foldamer’s helix and that certain substitutions made in the backbone structure could have similar electronic effects than direct substitutions on the ureas, while keeping intact structural parameters. These results show different alternatives to increase the H-bond donor capabilities of foldamers, and by characterizing each of them, it provides key insights for the design of improved catalysts in the area of enantioselective C–C bond-forming reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications: a comprehensive review. Adv Drug Del Rev 107:367–392. https://doi.org/10.1016/j.addr.2016.06.012

    Article  CAS  Google Scholar 

  2. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004

    Article  CAS  Google Scholar 

  3. Okino T, Hoashi Y, Takemoto Y (2003) Enantioselective Michaelr reaction of Malonates to nitroolefins catalyzed by bifunctional organocatalysts. J Am Chem Soc 125(42):12672–12673. https://doi.org/10.1021/ja036972z

    Article  CAS  PubMed  Google Scholar 

  4. Vakulya B, Varga S, Csámpai A, Soós T (2005) Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts. Organ Lett 7(10):1967–1969. https://doi.org/10.1021/ol050431s

    Article  CAS  Google Scholar 

  5. Sakai N, Kawashima K, Kajitani M, Mori S, Oriyama T (2021) Combined computational and experimental studies on the asymmetric Michael addition of \(\alpha \)-aminomaleimides to \(\beta \)-nitrostyrenes using an organocatalyst derived from cinchona alkaloid. Organ Lett 23(15):5714–5718. https://doi.org/10.1021/acs.orglett.1c01831

    Article  CAS  Google Scholar 

  6. Zhu J-L, Zhang Y, Liu C, Zheng A-M, Wang W (2012) Insights into the dual activation mechanism involving bifunctional cinchona alkaloid thiourea organocatalysts: an NMR and DFT study. J Organ Chem 77(21):9813–9825. https://doi.org/10.1021/jo302133n

    Article  CAS  Google Scholar 

  7. Sigman MS, Jacobsen EN (1998) Schiff base catalysts for the asymmetric Strecker reaction identified and optimized from parallel synthetic libraries. J Am Chem Soc 120(19):4901–4902. https://doi.org/10.1021/ja980139y

    Article  CAS  Google Scholar 

  8. Wåhlander J, Amedjkouh M, Balcells D (2019) A DFT perspective on Diels–Alder organocatalysts based on substituted phosphoramides: a DFT perspective on Diels–Alder organocatalysts based on substituted phosphoramides. Eur J Organ Chem 2019(2—-3):442–450. https://doi.org/10.1002/ejoc.201800844

    Article  CAS  Google Scholar 

  9. Wei S, Yalalov DA, Tsogoeva SB, Schmatz S (2007) New highly enantioselective thiourea-based bifunctional organocatalysts for nitro-Michael addition reactions. Catal Today 121(1–2):151–157. https://doi.org/10.1016/j.cattod.2006.11.018

    Article  CAS  Google Scholar 

  10. Hamza A, Schubert G, Soós T, Pápai I (2006) Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C–C bond formation. J Am Chem Soc 128(40):13151–13160. https://doi.org/10.1021/ja063201x

    Article  CAS  PubMed  Google Scholar 

  11. Izzo JA, Myshchuk Y, Hirschi JS, Vetticatt MJ (2019) Transition state analysis of an enantioselective Michael addition by a bifunctional thiourea organocatalyst. Organ Biomol Chem 17(16):3934–3939. https://doi.org/10.1039/C9OB00072K

    Article  CAS  Google Scholar 

  12. Vazquez-Chavez J, Luna-Morales S, Cruz-Aguilar DA, Díaz-Salazar H, Vallejo Narváez WE, Silva-Gutiérrez RS, Hernández-Ortega S, Rocha-Rinza T, Hernández-Rodríguez M (2019) The effect of chiral N-substituents with methyl or trifluoromethyl groups on the catalytic performance of mono- and bifunctional thioureas. Organ Biomol Chem 17(47):10045–10051. https://doi.org/10.1039/C9OB01893J

    Article  CAS  Google Scholar 

  13. Toledo-González Y, Sotiropoulos J-M, Bécart D, Guichard G, Carbonnière P (2022) Insight into substrate recognition by urea-based helical foldamer catalysts Using a DFT global optimization approach. J Organ Chem 87(16):10726–10735. https://doi.org/10.1021/acs.joc.2c00562

    Article  CAS  Google Scholar 

  14. Bécart D, Diemer V, Salaün A, Oiarbide M, Nelli YR, Kauffmann B, Fischer L, Palomo C, Guichard G (2017) Helical oligourea foldamers as powerful hydrogen bonding catalysts for enantioselective C–C bond-forming reactions. J Am Chem Soc 139(36):12524–12532. https://doi.org/10.1021/jacs.7b05802

    Article  CAS  PubMed  Google Scholar 

  15. Girvin ZC, Gellman SH (2020) Foldamer Catal. J Am Chem Soc 142(41):17211–17223. https://doi.org/10.1021/jacs.0c07347

    Article  CAS  PubMed  Google Scholar 

  16. Liptak MD, Shields GC (2001) Accurate pK\(_{\text{ a }}\) calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123(30):7314–7319. https://doi.org/10.1021/ja010534f

    Article  CAS  PubMed  Google Scholar 

  17. Toth AM, Liptak MD, Phillips DL, Shields GC (2001) Accurate relative pK\(_{\text{ a }}\) calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J Chem Phys 114(10):4595. https://doi.org/10.1063/1.1337862

    Article  CAS  Google Scholar 

  18. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) Absolute pK\(_{\text{ a }}\) determinations for substituted phenols. J Am Chem Soc 124(22):6421–6427. https://doi.org/10.1021/ja012474j

    Article  CAS  PubMed  Google Scholar 

  19. Liptak MD, Shields GC (2001) Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Int J Quantum Chem 85(6):727–741. https://doi.org/10.1002/qua.1703

    Article  CAS  Google Scholar 

  20. Bickmore BR, Tadanier CJ, Rosso KM, Monn WD, Eggett DL (2004) Bond-valence methods for pKa prediction: critical reanalysis and a new approach. Geochim Cosmochim Acta 68(9):2025–2042. https://doi.org/10.1016/j.gca.2003.11.008

    Article  CAS  Google Scholar 

  21. Silva RR, Ramalho TC, Santos JM, Figueroa-Villar JD (2006) On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. J Phys Chem A 110(3):1031–1040. https://doi.org/10.1021/jp054434y

    Article  CAS  PubMed  Google Scholar 

  22. Habibi-Yangjeh A, Danandeh-Jenagharad M, Nooshyar M (2006) Application of artificial neural networks for predicting the aqueous acidity of various phenols using QSAR. J Mol Model 12(3):338–347. https://doi.org/10.1007/s00894-005-0050-6

    Article  CAS  PubMed  Google Scholar 

  23. Casasnovas R, Fernández D, Ortega-Castro J, Frau J, Donoso J, Muñoz F (2011) Avoiding gas-phase calculations in theoretical pKa predictions. Theor Chem Acc 130(1):1–13. https://doi.org/10.1007/s00214-011-0945-5

    Article  CAS  Google Scholar 

  24. Matsui T, Oshiyama A, Shigeta Y (2011) A Simple scheme for estimating the pKa values of 5-substituted uracils. Chem Phys Lett 502(4–6):248–252. https://doi.org/10.1016/j.cplett.2010.12.043

    Article  CAS  Google Scholar 

  25. Hengphasatporn K, Matsui T, Shigeta Y (2020) Estimation of acid dissociation constants (pKa) of N-containing heterocycles in DMSO and transferability of gibbs free energy in different solvent conditions. Chem Lett 49(3):307–310. https://doi.org/10.1246/cl.190946

    Article  CAS  Google Scholar 

  26. Matsui T, Baba T, Kamiya K, Shigeta Y (2012) An accurate density functional theory based estimation of pKa values of polar residues combined with experimental data: from amino acids to minimal proteins. Phys Chem Chem Phys 14(12):4181. https://doi.org/10.1039/c2cp23069k

    Article  CAS  PubMed  Google Scholar 

  27. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58(8):1486–1493. https://doi.org/10.1021/ja01299a050

    Article  CAS  Google Scholar 

  28. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion- water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110(32):16066–16081

    Article  CAS  PubMed  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ Gaussian 16 Rev. C.01

  30. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  31. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  32. Salahub DR, Zerner MC (eds.) (1989) The challenge of D and F Eeectrons: theory and computation. ACS symposium series, vol. 394. American Chemical Society, Washington, DC

  33. Yang W, Parr RG (1989) Density functional theory of atoms and molecules. Oxford University Press, p 989

    Google Scholar 

  34. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96(3):2155–2160. https://doi.org/10.1063/1.462066

    Article  CAS  Google Scholar 

  35. Becke AD (1992) Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J Chem Phys 97(12):9173–9177

    Article  CAS  Google Scholar 

  36. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  37. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  38. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  39. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465. https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  40. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoret Chim Acta 28(3):213–222. https://doi.org/10.1007/BF00533485

    Article  CAS  Google Scholar 

  41. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  42. Burns LA, Mayagoitia AV-, Sumpter BG, Sherrill CD (2011) Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of Chemical Physics 134(8), 084107 https://doi.org/10.1063/1.3545971

  43. Witte J, Neaton JB, Head-Gordon M (2016) Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory. The Journal of Chemical Physics 144(19):194306. https://doi.org/10.1063/1.4949536

    Article  CAS  PubMed  Google Scholar 

  44. Thicoipe S, Carbonniere P, Pouchan C (2017) DFT modelling of the infrared spectra for isolated and aqueous forms of adenine. Theoretical Chemistry Accounts 136(4):44. https://doi.org/10.1007/s00214-017-2076-0

    Article  CAS  Google Scholar 

  45. Carbonniere P, Thicoipe S, Pouchan C (2013) Theoretical strategy to build structural models of microhydrated inorganic systems for the knowledge of their vibrational properties: the case of the hydrated nitrate aerosols. J Phys Chem A 117(18):3826–3834. https://doi.org/10.1021/jp309785q

    Article  CAS  PubMed  Google Scholar 

  46. Thicoipe S, Carbonniere P, Pouchan C (2013) The use of the GSAM approach for the structural investigation of low-lying isomers of molecular clusters from density-functional-theory-based potential energy surfaces: the structures of microhydrated nucleic acid bases. J Phys Chem A 117(32):7236–7245. https://doi.org/10.1021/jp401130a

    Article  CAS  PubMed  Google Scholar 

  47. Jakab G, Tancon C, Zhang Z, Lippert KM, Schreiner PR (2012) (Thio)urea organocatalyst equilibrium acidities in DMSO. Organ Lett 14(7):1724–1727. https://doi.org/10.1021/ol300307c

    Article  CAS  Google Scholar 

  48. Wang X-S, Zheng C-W, Zhao S-L, Chai Z, Zhao G, Yang G-S (2008) Organocatalyzed friedel-craft-type reaction of 2-naphthol with \(\beta \),\(\gamma \)-unsaturated \(\alpha \)-keto ester to form novel optically active naphthopyran derivatives. Tetrahedron Asymmetry 19(23):2699–2704. https://doi.org/10.1016/j.tetasy.2008.11.025

    Article  CAS  Google Scholar 

  49. Toledo-González Y (2022) Molecular design for catalytic activities of helical chiral oligoureas (the concerned results are the subject of a forthcoming publication). PhD thesis, University of Pau and the Adour Countries, Pau, France

Download references

Acknowledgements

The authors acknowledge financial support from the ANR project HCO_for_LLAC ANR-18-CE07-0018, and to have been granted access to the HPC resources of TGCC under the allocation 2022-A0110813033 made by GENCI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaidel Toledo-González or Philippe Carbonnière.

Ethics declarations

Conflict of interest

The authors declare to have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo-González, Y., Ahmed, F., Sotiropoulos, JM. et al. Evaluation of the donor character for urea-based foldamers throughout the empirical estimation of \(pK_a\). Theor Chem Acc 142, 67 (2023). https://doi.org/10.1007/s00214-023-03008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-023-03008-6

Keywords

Navigation