Skip to main content
Log in

Calculation of infrared spectra for adsorbed molecules from the dipole autocorrelation function

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Accurate ab initio investigations of vibrational properties for adsorbed molecules typically involve massive computational resources. We show that by using the autocorrelation function of the dipolar momentum to compute the infrared spectrum of the porphyrin and Co-porphyrin adsorbed on silver surface we can offer reliable data with a moderate computational effort. We test our implementation by comparing the results with benchmark and with experiment data. As our focus is to address adsorbed molecules, we exhaustively investigate the effect of the surface upon the IR spectrum as well as the influence of van der Waals interactions on the final IR spectra. The connection between molecule-surface charge transfer and the IR signature of adsorbate is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gottfried JM (2015) Surface chemistry of porphyrins and phthalocyanines. Surf Sci Rep 70:259–379. https://doi.org/10.1016/j.surfrep.2015.04.001

    Article  CAS  Google Scholar 

  2. Senge MO, Fazekas M, Notaras EGA, Blau WJ, Zawadzka M, Locos OB, Ni Mhuircheartaigh EM (2007) Nonlinear optical properties of porphyrins. Adv Mater 19:2737–2774. https://doi.org/10.1002/adma.200601850

    Article  CAS  Google Scholar 

  3. Birnbaum T, Hahn T, Martin C, Kortus J, Fronk M, Lungwitz F, Zahn DRT, Salvan G (2014) Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin thin films. J Phys Condens Matter 26:104201. https://doi.org/10.1088/0953-8984/26/10/104201

    Article  CAS  PubMed  Google Scholar 

  4. Sendhil K, Vijayan C, Kothiyal MP (2005) Nonlinear optical properties of a porphyrin derivative incorporated in Nafion polymer. Opt Mater 27:1606–1609. https://doi.org/10.1016/j.optmat.2004.04.021

    Article  CAS  Google Scholar 

  5. Buimaga-Iarinca L, Morari C (2019) The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface. Beilstein J Nanotechnol 10:706–717. https://doi.org/10.3762/bjnano.10.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bussetti RG, Campione M, Sassella A, Duò L (2015) Optical and morphological properties of ultra-thin H\(_2\)TPP, H\(_4\)TPP and ZnTPP films. Phys Status Solidi B 252:100–104. https://doi.org/10.1002/pssb.201350260

    Article  CAS  Google Scholar 

  7. Kalachyova Y, Lyutakov O, Prajzler V, Tuma J, Siegel J, Svorcik V (2014) Porphyrin migration and aggregation in a poly(methylmethacrylate) matrix. Polym Compos 35:665–670. https://doi.org/10.1002/pc.22709

    Article  CAS  Google Scholar 

  8. Bikiel DE, Bari SE, Doctorovich F, Estrin DA (2008) DFT study on the reactivity of iron porphyrins tuned by ring substitution. J Inorg Biochem 102:70–76. https://doi.org/10.1016/j.jinorgbio.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  9. Bhandary S, Brena B, Panchmatia PM, Brumboiu I, Bernien M, Weis C, Krumme B, Etz C, Kuch W, Wende H, Eriksson O, Sanyal B (2013) Manipulation of spin state of iron porphyrin by chemisorption on magnetic substrates. Phys Rev B 88:024401. https://doi.org/10.1103/PhysRevB.88.024401

    Article  CAS  Google Scholar 

  10. Rökert M, Franke M, Tariq Q, Lungerich D, Jux N, Stark M, Kaftan A, Ditze S, Marbach H, Laurin M, Libuda J, Steinrck H-P, Lytken O (2014) Insights in reaction mechanistics: isotopic exchange during the metalation of deuterated tetraphenyl-21,23D-porphyrin on Cu(111). J Phys Chem C 118:26729–26736. https://doi.org/10.1021/jp507303h

    Article  CAS  Google Scholar 

  11. Lee J, Tallarida N, Chen X, Liu P, Jensen L, Apkarian VA (2017) Tip-enhanced Raman spectromicroscopy of Co(II)-tetraphenylporphyrin on Au(111): toward the chemists’ microscope. ACS Nano 11:11466–11474. https://doi.org/10.1021/nn405335h

    Article  CAS  PubMed  Google Scholar 

  12. Theobald JA, Oxtoby NS, Phillips MA, Champness NR, Beton PH (2003) Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424:1029–1031. https://doi.org/10.1038/nature01915

    Article  CAS  PubMed  Google Scholar 

  13. Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng XB, Cai CZ, Barth JV, Kern K (2004) Steering molecular organization and host-guest interactions using two-dimensional nanoporous coordination systems. Nat Mater 3:229–233. https://doi.org/10.1038/nmat1088

    Article  CAS  PubMed  Google Scholar 

  14. Treier M, Ruffieux P, Groning P, Xiao SX, Nuckolls C, Fasel R (2008) An aromatic coupling motif for two-dimensional supramolecular architectures. Chem Commun 38:4555–4557. https://doi.org/10.1039/B809618J

    Article  Google Scholar 

  15. Morari C, Muntean CM (2003) Numerical simulations of Raman spectra of guanine-cytosine Watson-Crick and protonated Hoogsteen base pairs. Biopolymers (Biospectroscopy) 72:339–344. https://doi.org/10.1002/bip.10418

    Article  CAS  Google Scholar 

  16. Buimaga-Iarinca L, Morari C (2019) Translation of metal-phthalocyanines adsorbed on Au(111): from van der Waals interaction to strong electronic correlation. Sci Rep 8:12728. https://doi.org/10.1038/s41598-018-31147-5

    Article  CAS  Google Scholar 

  17. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–562. https://doi.org/10.1103/RevModPhys.73.515

    Article  CAS  Google Scholar 

  18. Calborean A, Buimaga-Iarinca L (2012) DFT simulation of vibrational properties of adenine adsorbed on gold surface: The effect of periodic boundary conditions. Comput Theor Chem 993:106–112. https://doi.org/10.1016/j.comptc.2012.05.040

    Article  CAS  Google Scholar 

  19. Delgado MR (2020) Structure and stability of gas adsorption complexes in periodic porous solids as studied by VTIR spectroscopy: an overview. Appl Sci 10:8589. https://doi.org/10.3390/app10238589

    Article  CAS  Google Scholar 

  20. Nattinoa F, Costanzo F, Kroes G-J (2015) N2 dissociation on W(110): An ab initio molecular dynamics study on the effect of phonons. J Chem Phys 142:104702. https://doi.org/10.1063/1.4913979

    Article  CAS  Google Scholar 

  21. Barreto MSC, Elzinga EJ, Alleoni LRF (2020) The molecular insights into protein adsorption on hematite surface disclosed by in-situ ATR-FTIR/2D-COS study. Sci Rep 10:13441. https://doi.org/10.1038/s41598-020-70201-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lansford JL, Vlachos DG (2020) Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials. Nat Commun 11:1513. https://doi.org/10.1038/s41467-020-15340-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lansford JL, Mironenko AV, Vlachos DG (2017) Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces. Nat Commun 8:1842. https://doi.org/10.1038/s41467-017-01983-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:R10441. https://doi.org/10.1103/PhysRevB.53.R10441

    Article  Google Scholar 

  25. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  26. Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, L W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Wloch M, Xu P, Zahariev F, Gordon MS, (2020) Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 152:15410. https://doi.org/10.1063/5.0005188

  27. Berland K, Hyldgaard P (2014) Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys Rev B 89:035412. https://doi.org/10.1103/PhysRevB.89.035412

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  29. Verlet L (1967) Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98. https://doi.org/10.1103/PhysRev.159.98

    Article  CAS  Google Scholar 

  30. Leach AR (2001) Molecular modelling. Prentice Hall, London

    Google Scholar 

  31. McQuarrie AA (1976) Statistical mechanics. Harper & Row, New York

    Google Scholar 

  32. Praprotnik M, Janezic D (2005) Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water. J Chem Phys 122:174103. https://doi.org/10.1063/1.1884609

    Article  CAS  PubMed  Google Scholar 

  33. Boullard B, Jieffer J, Phifer CC, Angell CA (1992) Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation. J Non Cryst Solids 140:350–358. https://doi.org/10.1016/S0022-3093(05)80795-1

    Article  Google Scholar 

  34. Thomas M, Kirchner B (2016) Classical magnetic dipole moments for the simulation of vibrational circular dichroism by ab initio molecular dynamics. J Phys Chem Lett 7:509–513. https://doi.org/10.1021/acs.jpclett.5b02752

    Article  CAS  PubMed  Google Scholar 

  35. Thomas M, Brehm M, Fligg R, Voehringer P, Kirchner B (2013) Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15:6608–6622. https://doi.org/10.1039/C3CP44302G

    Article  CAS  PubMed  Google Scholar 

  36. Thomas M, Brehm M, Kirchner B (2015) Voronoi dipole moments for the simulation of bulk phase vibrational spectra. Phys Chem Chem Phys 17:3207–3213. https://doi.org/10.1039/C4CP05272B

    Article  CAS  PubMed  Google Scholar 

  37. Lin S-T, Blanco M, Goddard WA III (2003) The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids. J Chem Phys 119:11792. https://doi.org/10.1063/1.1624057

    Article  CAS  Google Scholar 

  38. Sun Zhi-Cheng, She Yuan-Bin, Zhou Yang, Song Xu-Feng, Li Kai (2011) Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes. Molecules 16:2960–2970. https://doi.org/10.3390/molecules16042960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jana Hudecová, Václav Profant, Pavlina Novotná, Vladimir Baumruk, Marie Urbanova, Petr Bour (2013) CH Stretching region: computational modeling of vibrational optical activity. J Chem Theory Comput 9(7):3096–3108. https://doi.org/10.1021/ct400285n

    Article  CAS  Google Scholar 

  40. Peverati R, Truhlar DG (2011) Improving the accuracy of hybrid meta-GGA density functionals by range separation. J Phys Chem Lett 2:2810–2817. https://doi.org/10.1021/jz201170d

    Article  CAS  Google Scholar 

  41. Nelson H M (1954) The infrared spectrum of porphin. PhD thesys

  42. Boucher JL, Katz JJ (1967) The infared spectra of Metalloporphyrins (4000–160 Cm\(^-1\)). J Am Chem Soc 89:1340. https://doi.org/10.1021/ja00982a011

    Article  CAS  PubMed  Google Scholar 

  43. Kokalj A (2003) Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comp Mater Sci 28:155. https://doi.org/10.1016/S0927-0256(03)00104-6

    Article  CAS  Google Scholar 

  44. Mathias G, Baer MD (2011) Generalized normal coordinates for the vibrational analysis of molecular dynamics simulations. J Chem Theory Comput 7:2028–2039. https://doi.org/10.1021/ct2001304

    Article  CAS  PubMed  Google Scholar 

  45. Mathias G, Ivanov SD, Witt A, Baer MD, Marx D (2012) Infrared spectroscopy of fluxional molecules from (ab Initio) molecular dynamics: resolving large-amplitude motion, multiple conformations, and permutational symmetries. J Chem Theory Comput 8:224–234. https://doi.org/10.1021/ct2006665

    Article  CAS  PubMed  Google Scholar 

  46. Thomas M, Brehm M, Hollóczki O, Kelemen Z, Nyulászi L, Pasinszki T, Kirchner B (2014) Simulating the vibrational spectra of ionic liquid systems: 1-Ethyl-3-methylimidazolium acetate and its mixtures. J Chem Phys 141:024510. https://doi.org/10.1063/1.4887082

    Article  CAS  PubMed  Google Scholar 

  47. Kim H, Chang YH, Lee S-H, Lim S, Noh S-K, Kim Y-H, Kahng S-J (2014) Visualizing tilted binding and precession of diatomic NO adsorbed to Co-porphyrin on Au(111) using scanning tunneling microscopy. Chem Sci 5:2224–2229. https://doi.org/10.1039/C3SC52004H

    Article  CAS  Google Scholar 

  48. Kini AD, Washington J, Kubiak CP, Morimoto BH (1996) Spectroelectrochemical characterization of substituted Cobalt nitrosyl porphyrins. Inorg Chem 35:6904–6906. https://doi.org/10.1021/ic9604223

    Article  CAS  PubMed  Google Scholar 

  49. Kurtikyan TS, Martirosyan GG, Lorkovic IM, Ford PC (2002) Comparative IR study of nitric oxide reactions with sublimed layers of Iron(II)-and Ruthenium(II)-meso-tetraphenylporphyrinates. J Am Chem Soc 124:10124–10129. https://doi.org/10.1021/ja0269688

    Article  CAS  PubMed  Google Scholar 

  50. Lorković IM, Ford PC (2000) Reactivity of the Iron porphyrin Fe(TPP)(NO) with excess NO. Formation of Fe(TPP)(NO)(NO\(_2\)) occurs via reaction with trace NO\(_2\). Inorg Chem 39:632–633. https://doi.org/10.1021/ic9910413

    Article  CAS  PubMed  Google Scholar 

  51. Goodwin J, Kurtikyan T, Standard J, Walsh R, Zheng B, Parmley D, Howard J, Green S, Mardyukov A, Przybyla DE (2005) Variation of oxo-transfer reactivity of (Nitro)Cobalt picket fence porphyrin with Oxygen-donating ligands. Inorg Chem 44:2215–2223. https://doi.org/10.1021/ic048701a

    Article  CAS  PubMed  Google Scholar 

  52. Dal Corso A, Pasquarello A, Baldereschi A (1997) Density-functional perturbation theory for lattice dynamics with ultrasoft pseudopotentials. Phys Rev B 56:R11369. https://doi.org/10.1103/PhysRevB.56.R11369

    Article  Google Scholar 

  53. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  54. E. Garrone, B. Bonelli, C. Lamberti and B. Civalleri, M. Rocchia, P. Roy, C. Otero (2002)Areán Coupling of framework modes and adsorbate vibrations for CO2 molecularly adsorbed on alkali ZSM-5 zeolites: Mid- and far-infrared spectroscopy and ab initio modeling J Chem Phys 117: 10274 https://doi.org/10.1063/1.1519254

  55. Gardner, P (Gardner, P); LeVent, S (LeVent, S); Pilling, M (Pilling, M), A theoretical investigation of the far-infrared RAIRS experiment applied to a buried metal layer substrate Surface Science 559(2-3): June 2004, 186-200; https://doi.org/10.1016/j.susc.2004.04.020

  56. Russell Andrea E, Lin Andrew S, O’Grady William E (1993) In situ far-infrared evidence for a potential dependence of silver-water interactions. J Chem Soc Faraday Trans 89: 195-198; https://doi.org/10.1039/FT9938900195

Download references

Acknowledgements

The work was founded by the UEFISCDI, project PN-III-P4-ID-PCE-2020-0824.

Author information

Authors and Affiliations

Authors

Contributions

CM designed and coordinated the study. LBI was involved into paper writing and data analysis.

Corresponding author

Correspondence to Cristian Morari.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buimaga-Iarinca, L., Morari, C. Calculation of infrared spectra for adsorbed molecules from the dipole autocorrelation function. Theor Chem Acc 141, 69 (2022). https://doi.org/10.1007/s00214-022-02932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02932-3

Keywords

Navigation