Skip to main content
Log in

Coupling density functional based tight binding with class 1 force fields in a hybrid QM/MM scheme

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid methods have become very popular schemes to incorporate environmental effects in the calculation of molecular properties, when it is mandatory to have both a quantum description of electrons to compute these properties and an atomistic description of the environment. However, even Density Functional Theory/MM schemes may become timecosting when a large part of the system should be treated at the QM level or when plenty of single point energy calculations are intended to be done. We report a new implementation, within the deMonNano code, of a hybrid QM/MM scheme combining the density functional based tight binding with class 1 force fields. Two types of additive couplings can be chosen, namely the mechanical coupling, consisting of a Lennard-Jones potential and the electrostatic coupling, in which the MM part of the system is also polarizing the region described at the QM level. As first test-case application, the harmonic infrared spectra of simple molecules in the gas phase and in water clusters are computed and compared to those obtained at the DFT/MM level. Binding energies are also compared. Similar trends are obtained with the two levels of calculations and the main differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The present version of the code corresponding to this work can be downloaded from deMonNano website (10.12.2021) and corresponds to git hash commit f3707842dd69b9629954a55a28693189d572f425.

References

  1. Warshel A, Karplus M (1972) J Am Chem Soc 94(16):5612

    Article  CAS  Google Scholar 

  2. Warshel A, Levitt M (1976) J Mol Biol 103(2):227

    Article  CAS  PubMed  Google Scholar 

  3. Groenhof G (2013) Introduction to QM/MM simulations. Humana Press, Totowa, pp 43–66

    Google Scholar 

  4. Maseras F, Morokuma K (1995) J Comput Chem 16(9):1170

    Article  CAS  Google Scholar 

  5. Senn HM, Thiel W (2007) Curr Opin Chem Biol 11(2):182

    Article  CAS  PubMed  Google Scholar 

  6. Marcolongo JP, Zeida A, Semelak JA, Foglia NO, Morzan UN, Estrin DA, González Lebrero MC, Scherlis DA (2018) Front Chem 6:70

    Article  PubMed  PubMed Central  Google Scholar 

  7. Biswas PK, Chakraborty S (2019) Nucleic Acids Res 47(6):2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klähn M, Schlitter J, Gerwert K (2005) Biophys J 88(6):3829

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhekova HR, Ngo V, da Silva MC, Salahub D, Noskov S (2017) Coord Chem Rev 345:108

    Article  CAS  Google Scholar 

  10. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947

    Article  CAS  Google Scholar 

  11. Seifert G, Porezag D, Frauenheim T (1996) Int J Quantum Chem 58:185

    Article  CAS  Google Scholar 

  12. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  13. Elstner M, Seifert G (2014) Philosophical transactions of the royal society a: mathematical. Phys Eng Sci 372(2011):20120483

    Google Scholar 

  14. Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M (2020) Adv Phys X 5(1):1710252

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Slater JC, Koster GF (1954) Phys Rev 94:1498

    Article  CAS  Google Scholar 

  16. Gruden M, Andjeklovic L, Jissy AK, Stepanovic S, Zlatar M, Cui Q, Elstner M (2017) J Comput Chem 38(25):2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng L, Zamith S, Rapacioli M (2021) Theoret Chem Acc 140(2):19

    Article  CAS  Google Scholar 

  18. Niehaus TA, Suhai S, Della Sala F, Lugli P, Elstner M, Seifert G, Frauenheim T (2001) Phys Rev B 63:085108

    Article  Google Scholar 

  19. Witek H, Morokuma K, Stradomska A (2005) J Theor Comput Chem 4:639

    Article  CAS  Google Scholar 

  20. Dontot L, Spiegelman F, Zamith S, Rapacioli M (2020) Eur Phys J D 74(11):216

    Article  CAS  PubMed  Google Scholar 

  21. Chakraborty S, Mulas G, Rapacioli M, Joblin C (2021) J Mol Spectrosc 378:111466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Witek H, Morokuma K, Stradomska A (2004) J Chem Phys 121(11):5171

    Article  CAS  PubMed  Google Scholar 

  23. Cuny J, Tarrat N, Spiegelman F, Huguenot A, Rapacioli M (2018) J Phys Condens Matter 30(30):303001

    Article  PubMed  Google Scholar 

  24. Wahiduzzaman M, Oliveira AF, Philipsen P, Zhechkov L, van Lenthe E, Witek HA, Heine T (2013) J Chem Theor Comp 9(9):4006

    Article  CAS  Google Scholar 

  25. Elstner M, Porezag D, Seifert G, Frauenheim T, Suhai S (1998) MRS Online Proc Libr 538:541

    Article  Google Scholar 

  26. Salomon-Ferrer R, Case DA, Walker RC (2013) WIREs Comput Mol Sci 3(2):198

    Article  CAS  Google Scholar 

  27. Seabra GDM, Walker RC, Elstner M, Case DA, Roitberg AE (2007) J Phys Chem A 111(26):5655

    Article  Google Scholar 

  28. Kubar T, Welke K, Groenhof G (2015) J Comput Chem 36(26):1978

    Article  CAS  PubMed  Google Scholar 

  29. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105(2):569

    Article  CAS  Google Scholar 

  30. Lima GFd, Heine T, Duarte HA, Sabin JR, Brändas E (2010) Chapter 5: Molecular dynamics of polypeptides and their inclusion compounds with cyclodextrin in aqueous solution using DC-SCC-DFTB/UFF approach. Academic Press, Cambridge, pp 145–180

    Google Scholar 

  31. Iftner C, Simon A, Korchagina K, Rapacioli M, Spiegelman F (2014) J Chem Phys 140(3):034301

    Article  PubMed  Google Scholar 

  32. Hou G, Zhu X, Cui Q (2010) J Chem Theory Comput 6(8):2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishimoto Y (2016) J Phys Chem A 120(5):771

    Article  CAS  PubMed  Google Scholar 

  34. Kubař T, Woiczikowski PB, Cuniberti G, Elstner M (2008) J Phys Chem B 112:7937

    Article  PubMed  Google Scholar 

  35. Lundberg M, Sasakura Y, Zheng G, Morokuma K (2010) J Chem Theo Comput 6(4):1413

    Article  CAS  Google Scholar 

  36. Heine T, Rapacioli M, Patchkovskii S, Frenzel J, Koster A, Calaminici P, Duarte HA, Escalante S, Flores-Moreno R, Goursot A, Reveles J, Salahub D, Vela A, deMonNano (2009) http://demon-nano.ups-tlse.fr

  37. Gillet N, Elstner M, Kubař T (2018) J Chem Phys 149(7):072328

    Article  PubMed  Google Scholar 

  38. Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye MY, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler C, Kowalczyk T, Kubař T, Lee IS, Lutsker V, Maurer RJ, Min SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page AJ, Pecchia A, Penazzi G, Persson MP, Řezáč J, Sánchez CG, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VWz, Frauenheim T (2020) J Chem Phys 152(12): 124101

  39. de Seabra MG, Walker RC, Elstner M, Case DA, Roitberg AE (2007) J Phys Chem A 111(26):5655

    Article  Google Scholar 

  40. Götz AW, Clark MA, Walker RC (2014) J Comput Chem 35(2):95

    Article  PubMed  Google Scholar 

  41. Oliveira A, Seifert G, Heine T, Duarte H (2009) J Braz Chem Soc 20:1193

    Article  CAS  Google Scholar 

  42. Koskinen P, Makinen V (2009) Comput Mater Sci 47(1):237

    Article  CAS  Google Scholar 

  43. Foulkes WMC, Haydock R (1989) Phys Rev B 39:12520

    Article  CAS  Google Scholar 

  44. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58(11):7260

    Article  CAS  Google Scholar 

  45. Yang Y, Yu H, Uork D, Cui Q, Elstner M (2007) J Phys Chem A 111:10861

    Article  CAS  PubMed  Google Scholar 

  46. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7(4):931

    Article  CAS  Google Scholar 

  47. Gaus M, Goez A, Elstner M (2013) J Chem Theo Comp 9(1):338

    Article  CAS  Google Scholar 

  48. Monticelli L, Tieleman DP (2013) Force fields for classical molecular dynamics. Humana Press, Totowa, pp 197–213

    Google Scholar 

  49. González MA (2011) JDN 12:169

    Article  Google Scholar 

  50. Vanommeslaeghe K, Guvench O, MacKerell J, Alexander D (2014) Curr Pharm Des 20(20):3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11(6):700

    Article  CAS  Google Scholar 

  52. de la Lande A, Alvarez-Ibarra A, Hasnaoui K, Cailliez F, Wu X, Mineva T, Cuny J, Calaminici P, López-Sosa L, Geudtner G, Navizet I, Garcia-Iriepa C, Salahub DR, Köster AM (2019) Molecules 24(9):1666

    Article  Google Scholar 

  53. Koster A, Geudtner G, Alvarez-Ibarra A, Calaminici P, Casida M, Carmona-Espindola J, Dominguez V, Flores-Moreno R, Gamboa G, Goursot A, Heine T, Ipatov A, de la Lande A, Janetzko F, del Campo J, Mejia-Rodriguez D, Reveles JU, Vasquez-Perez J, Vela A, Zuniga-Gutierrez B, Salahub D (2018) deMon2k Version 6

  54. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  PubMed  Google Scholar 

  55. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70(2):560

    Article  CAS  Google Scholar 

  56. Köster AM, Reveles JU, del Campo JM (2004) J Chem Phys 121(8):3417

    Article  PubMed  Google Scholar 

  57. Nosé S (1984) J Chem Phys 81(1):511

    Article  Google Scholar 

  58. Hoover WG (1985) Phys Rev A 31(3):1695

    Article  CAS  Google Scholar 

  59. Oliveira AF, Philipsen P, Heine T (2015) J Chem Theor Comput 11(11):5209

    Article  CAS  Google Scholar 

  60. Gutmann V, Resch G (1995) Lecture notes on solution chemistry. World Scientific Co. Pte.Ltd

  61. Miller TM, Bederson B, Bates DR (1978) Atomic and molecular polarizabilities: a review of recent advances. Academic Press, Cambridge, pp 1–55

    Google Scholar 

  62. Olney TN, Cann NM, Cooper G, Brion CE (1997) Chem Phys 223(1):59

    Article  CAS  Google Scholar 

  63. Wu X, Teuler JM, Cailliez F, Clavaguéra C, Salahub DR, de la Lande A (2017) J Chem Theory Comput 13(9):3985

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the ANR agency (Project ANR-19-CE29-0011-02 RUBI) for financial support and the supercomputing facilities of CALMIP for generous allocation of computer resources (Project P0059 and P18009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzonka Mineva or Mathias Rapacioli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles “20th deMon Developers Workshop”.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusef Buey, M., Mineva, T. & Rapacioli, M. Coupling density functional based tight binding with class 1 force fields in a hybrid QM/MM scheme. Theor Chem Acc 141, 16 (2022). https://doi.org/10.1007/s00214-022-02878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-022-02878-6

Keywords

Navigation