Skip to main content
Log in

Computational study of noncovalent interactions within the various complexes of para aminosalicylic acid and Cr2+, Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+ cations: exploration of the enhancing effect of the cation–π interaction on the intramolecular hydrogen bond

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The quantum chemical calculations are performed to investigate the effect of cation–π interactions on structural and electronic characterization of the various complexes of para aminosalicylic acid with mono- (Mn+, Co+, Cu+) and divalent (Cr2+, Fe2+, Ni2+, Zn2+) metal cations. Topological analysis of the atoms in molecules is applied to evaluate the nature of the considered interactions. Electron populations obtained from the natural bond orbital analysis also give insight into the electron nature of the studied systems. The achieved outcomes from calculations show that the strongest/weakest interactions belong to the divalent/monovalent complexes. Besides, one O–H···O intramolecular hydrogen bond (H-bond) is observed in the analyzed complexes. Our findings indicate that the H-bond of complexes is placed in the medium H-bonds category. In addition, it can be stated that the O–H···O H-bond is strengthened/weakened by cation–π interactions in the presence of divalent/monovalent complexes. The energy gap, electronic chemical potential, chemical hardness, softness, and electrophilicity index are also calculated by using frontier molecular orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stuart MC, Kouimtzi M, Hill SR (eds) (2008) WHO model formulary. Department of Essential Medicines and Pharmaceutical Policies World Health Organization, Geneva

    Google Scholar 

  2. “Aminosalicylic Acid”. The American Society of Health-System Pharmacists, Archived from the original on 20 December (2016). www.drugs.com

  3. Daniel F, Seksik P, Cacheux W, Jian R, Marteau P (2004) Tolerance of 4-aminosalicylic acid enemas in patients with inflammatory bowel disease and 5-aminosalicylic-induced acute pancreatitis. Inflamm Bowel Dis 10:258–260

    PubMed  Google Scholar 

  4. Handbook of anti-tuberculosis agents, para-aminosalicylic acid (2008) Tuberculosis 88:137–138

  5. Hunter CA, Sanders JKM (1990) The nature of π–π interactions. J Am Chem Soc 112:5525–5534

    CAS  Google Scholar 

  6. Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. Angew Chem Int Ed 42:1210–1250

    CAS  Google Scholar 

  7. Ikuta S (2000) A theoretical study on the conformations and energetics on the cation–π interaction between monovalent ions (M+ = Li+, Na+, and K+) and anthracene and phenanthrene molecules. J Mol Struct (Theochem) 530:201–207

    CAS  Google Scholar 

  8. Salonen LM, Ellerman M, Diederich F (2011) Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed 50:4808–4842

    CAS  Google Scholar 

  9. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    CAS  PubMed  Google Scholar 

  10. Eliel EL, Wilen SH (1996) Stereochemistry of organic compounds. Wiley Interscience Publication, New York

    Google Scholar 

  11. Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    CAS  PubMed  Google Scholar 

  12. Oshovsky GV, Reinhoudt DN, Verboom W (2007) Supramolecular chemistry in water. Angew Chem Int Ed 46:2366–2393

    CAS  Google Scholar 

  13. Saalfrank RW, Maid H, Scheurer A (2008) Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew Chem Int Ed 47:8794–8824

    CAS  Google Scholar 

  14. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  15. Gilli G, Gilli P (2009) The nature of hydrogen bond. Oxford University Press, New York

    Google Scholar 

  16. Desiraju GR (1991) The C-H…O hydrogen bond in crystals: what is it? Acc Chem Res 24:290–296

    CAS  Google Scholar 

  17. Subramanian S, Zaworotko MJ (1994) Exploitation of the hydrogen bond: recent developments in the context of crystal engineering. Coord Chem Rev 137:357–401

    CAS  Google Scholar 

  18. Hunter CA (1994) The role of aromatic interactions in molecular recognition. Chem Soc Rev 23:101–109

    CAS  Google Scholar 

  19. Adams H, Carver FJ, Hunter CA, Osborne NJ (1996) Amide–aromatic hydrogen-bonds in host–guest recognition. Chem Commun 22:2529–2530

    Google Scholar 

  20. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  21. Vangala VR, Nangia A, Lynch VM (2002) Interplay of phenyl–perfluorophenyl stacking, C-H···F, C–F···π and F···F interactions in some crystalline aromatic azines. Chem Commun 12:1304–1305

    Google Scholar 

  22. Estarellas C, Frontera A, Quiñonero D, Deyà PM (2009) Interplay between cation–π and hydrogen bonding interactions: are non-additivity effects additive? Chem Phys Lett 479:316–320

    CAS  Google Scholar 

  23. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  24. Cubero E, Luque FJ, Orozco M (1998) Is polarization important in cation–π interactions? Proc Natl Acad Sci 95:5976–5980

    CAS  PubMed  Google Scholar 

  25. Müller-Dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–167

    PubMed  Google Scholar 

  26. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

    Google Scholar 

  27. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, West Sussex

    Google Scholar 

  28. Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. B Dtsch Chem Ges 27:2985–2993

    CAS  Google Scholar 

  29. Rooman M, Liévin J, Buisine E, Wintjens R (2002) Cation–π/H-bond stair motifs at protein–DNA interfaces. J Mol Biol 319:67–76

    CAS  PubMed  Google Scholar 

  30. Estarellas C, Escudero D, Frontera A, Quiñonero D, Deyá PM (2009) Theoretical ab initio study of the interplay between hydrogen bonding, cation–π and π–π interactions. Theor Chem Acc 122:325–332

    CAS  Google Scholar 

  31. Escudero D, Frontera A, Quiñonero D, Deyá PM (2008) Interplay between cation–π and hydrogen bonding interactions. Chem Phys Lett 456:257–261

    CAS  Google Scholar 

  32. Ai H, Bu Y, Li P, Li Z, Hu X, Chen Z (2005) Geometry and binding properties of different multiple-state glycine–Fe+/Fe2+ complexes. J Phys Org Chem 18:26–34

    CAS  Google Scholar 

  33. Banu L, Blagojevic V, Bohme DK (2012) Dissociation of deprotonated glycine complexes with Pb2+ and five transition-metal dications (Fe2+, Co2+, Ni2+, Cu2+, Zn2+): the importance of metal bond activation. Int J Mass Spectrom 330:168–173

    Google Scholar 

  34. Marino T, Toscano M, Russo N, Grand A (2006) Structural and electronic characterization of the complexes obtained by the interaction between bare and hydrated first-row transition-metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and glycine. J Phys Chem B 110:24666–24673

    CAS  PubMed  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann JRE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Pet-ersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03. Revision A.02. Gaussian Inc, Pittsburgh

    Google Scholar 

  36. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements. Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  37. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103-1–161103-4

    Google Scholar 

  38. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    PubMed  Google Scholar 

  39. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101-1–194101-18

    Google Scholar 

  40. Zhao Y, Truhlar DG (2007) Density functionals for noncovalent interaction energies of biological importance. J Chem Theory Comput 3:289–300

    CAS  PubMed  Google Scholar 

  41. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    CAS  Google Scholar 

  42. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  43. Biegler König F, Schönbohm J (2002) Update of the AIM2000-program for atoms in molecules. J Comput Chem 23:1489–1494

    PubMed  Google Scholar 

  44. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    CAS  Google Scholar 

  45. Glendening ED, Reed AE, Carpenter JE, Weinhold F, NBO. Version 3.1

  46. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    CAS  Google Scholar 

  47. Bader R, Keith T, Gough K, Laidig K (1992) Properties of atoms in molecules: additivity and transferability of group polarizabilities. Mol Phys 75:1167–1189

    CAS  Google Scholar 

  48. Raissi H, Yoosefian M (2012) Substituent effect on the reaction mechanism of proton transfer in formamide. Int J Quantum Chem 112:2378–2381

    CAS  Google Scholar 

  49. Raissi H, Yoosefian M, Hajizadeh A, Karimi M, Farzad F (2012) Theoretical description of substituent effects in 2,4-pentanedione: AIM, NBO, and NMR study. Bull Chem Soc Jpn 85:87–92

    CAS  Google Scholar 

  50. Carroll MT, Chang C, Bader RFW (1988) Prediction of the structures of hydrogen-bonded complexes using the Laplacian of the charge density. Mol Phys 63:387–405

    CAS  Google Scholar 

  51. Carroll MT, Bader RFW (1988) An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722

    CAS  Google Scholar 

  52. Vijayakumar S, Kolandaivel P (2005) Red-shifted and improper blue-shifted hydrogen bonds in dimethyl ether (DME)n (n = 1–4) and hydrated (DME)n (n = 1–4) clusters: a theoretical study. J Mol Struct 734:157–169

    CAS  Google Scholar 

  53. Koch U, Popelier PLA (1995) Characterization of C–H–O hydrogen bonds on the basis of the charge density. J Chem Phys 99:9747–9754

    CAS  Google Scholar 

  54. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    CAS  Google Scholar 

  55. Checinska L, Grabowski SJ (2006) F–H···F–C hydrogen bonds—the influence of hybridization of carbon atom connected with F-acceptor on their properties. Chem Phys 327:202–208

    CAS  Google Scholar 

  56. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-HF–Y systems. J Chem Phys 117:5529–5542

    CAS  Google Scholar 

  57. Grabowski SJ (2001) Ab initio calculations on conventional and unconventional hydrogen bonds study of the hydrogen bond strength. J Phys Chem A 105:10739–10746

    CAS  Google Scholar 

  58. Grabowski SJ (2004) Hydrogen bonding strength measures based on geometric and topological parameters. J Phys Org Chem 17:18–31

    CAS  Google Scholar 

  59. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    CAS  Google Scholar 

  60. Mó O, Yáñez M, Elguero J (1992) Cooperative (nonpairwise) effects in water trimers: an ab initio molecular orbital study. J Chem Phys 97:6628–6638

    Google Scholar 

  61. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    CAS  Google Scholar 

  62. Grabowski SJ (2004) Hydrogen bonding strengthmeasures based on geometric and topological parameters. Phys Org Chem 17:18–31

    CAS  Google Scholar 

  63. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    CAS  PubMed  Google Scholar 

  64. Hobza P, Spirko V, Selzle HL, Schlag EW (1998) Anti-hydrogen bond in the benzene dimer and other carbon proton donor complexes. J Phys Chem A 102:2501–2504

    CAS  Google Scholar 

  65. Yoosefian M, Ansarinik Z, Etminan N (2016) Density functional theory computational study on solvent effect, molecular conformations, energies and intramolecular hydrogen bond strength in different possible nano-conformers of acetaminophen. J Mol Liq 213:115–121

    CAS  Google Scholar 

  66. Rahmanifar E, Yoosefian M, Karimi-Maleh H (2016) Electronic properties and reactivity trend for defect functionalization of single-walled carbon nanotube with B, Al, Ga atoms. Synth Met 221:242–246

    CAS  Google Scholar 

  67. Pearson RG (1997) Chemical hardness. Wiley-VCH, Oxford

    Google Scholar 

  68. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  69. Joseph T, Varghese HT, Panicker CY, Viswanathan K, Dolezal M, Van Alsenoy C (2017) Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of N-[(4-(trifluoromethyl)phenyl]pyrazine-2-carboxamide by density functional methods. Arab J Chem 10:S2281–S2294

    CAS  Google Scholar 

  70. Koopmans T (1933) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica 1:104–113

    CAS  Google Scholar 

  71. Yoosefian M, Etminan N (2015) Pd-doped single-walled carbon nanotube as a nanobiosensor for histidine amino acid: a DFT study. RSC Adv 5:31172–31178

    CAS  Google Scholar 

  72. Yoosefian M, Raissi H, Mola A (2015) The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the formaldehydemolecule detection: a DFT study. Sens Actuators B Chem 212:55–62

    CAS  Google Scholar 

  73. Yoosefian M, Mola A (2015) Solvent effects on binding energy, stability order and hydrogen bonding of guanine–cytosine base pair. J Mol Liq 209:526–530

    CAS  Google Scholar 

  74. Parr RG, von Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  75. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules 21:748–770

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Payame Noor University, Tehran, Iran, for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Alirezapour.

Ethics declarations

Conflict of statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 663 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alirezapour, F., Khanmohammadi, A. Computational study of noncovalent interactions within the various complexes of para aminosalicylic acid and Cr2+, Mn+, Fe2+, Co+, Ni2+, Cu+, Zn2+ cations: exploration of the enhancing effect of the cation–π interaction on the intramolecular hydrogen bond. Theor Chem Acc 139, 180 (2020). https://doi.org/10.1007/s00214-020-02700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-02700-1

Keywords

Navigation