Skip to main content

Advertisement

Log in

Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine \(\hbox {NaFePO}_4\)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The study of ion transport in electrochemically active materials for energy storage systems requires simulations on quantum-, atomistic- and meso-scales. The methods accessing these scales not only have to be effective but also well compatible to provide a full description of the underlying processes. We propose to adapt the Generalized Shadow Hybrid Monte Carlo (GSHMC) method to atomistic simulation of ion intercalation electrode materials for batteries. The method has never been applied to simulations in solid-state chemistry but it has been successfully used for simulation of biological macromolecules, demonstrating better performance and accuracy than can be achieved with the popular molecular dynamics (MD) method. It has been also extended to simulations on meso-scales, making it even more attractive for simulation of battery materials. We combine GSHMC with the dynamical core–shell model to incorporate polarizability into the simulation and apply the new Modified Adaptive Integration Approach, MAIA, which allows for a larger time step due to its excellent conservation properties. Also, we modify the GSHMC method, without losing its performance and accuracy, to reduce the negative effect of introducing a shell mass within a dynamical shell model. The proposed approach has been tested on olivine \(\hbox {NaFePO}_4\), which is a promising cathode material for Na-ion batteries. The calculated Na-ion diffusion and structural properties have been compared with the available experimental data and with the results obtained using MD and the original GSHMC method. Based on these tests, we claim that the new technique is advantageous over MD and the conventional GSHMC and can be recommended for studies of other solid-state electrode and electrolyte materials whenever high accuracy and efficient sampling are critical for obtaining tractable simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi:10.1038/35104644

    Article  CAS  Google Scholar 

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262. doi:10.1039/C1EE01598B

    Article  CAS  Google Scholar 

  3. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. doi:10.1038/451652a

    Article  CAS  Google Scholar 

  4. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176. doi:10.1021/ja3091438

    Article  CAS  Google Scholar 

  5. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682. doi:10.1021/cr500192f

    Article  CAS  Google Scholar 

  6. Han MH, Gonzalo E, Singh G, Rojo T (2015) A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ Sci 8:81–102. doi:10.1039/C4EE03192J

    Article  Google Scholar 

  7. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013. doi:10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  8. Hautier G, Jain A, Ong SP (2012) From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci 47:7317–7340. doi:10.1007/s10853-012-6424-0

    Article  CAS  Google Scholar 

  9. Jain A, Shin Y, Persson KA (2016) Computational predictions of energy materials using density functional theory. Nat Rev Mater 1:15004. doi:10.1038/natrevmats.2015.4

    Article  CAS  Google Scholar 

  10. Islam MS, Fisher CAJ (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204. doi:10.1039/C3CS60199D

    Article  CAS  Google Scholar 

  11. Meng YS, Arroyo-de Dompablo ME (2009) First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ Sci 2:589–609. doi:10.1039/B901825E

    Article  CAS  Google Scholar 

  12. Meng YS, Arroyo-de Dompablo ME (2013) Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res 46:1171–1180. doi:10.1021/ar2002396

    Article  CAS  Google Scholar 

  13. Ramzan M, Lebègue S, Larsson P, Ahuja R (2009) Structural, magnetic, and energetic properties of Na\(_{2}\)FePO\(_{4}\)F, Li\(_{2}\)FePO\(_{4}\)F, NaFePO\(_{4}\)F, and LiFePO\(_{4}\)F from ab initio calculations. J Appl Phys 106:043510. doi:10.1063/1.3202384

    Article  Google Scholar 

  14. Moreau P, Guyomard D, Gaubicher J, Boucher F (2010) Structure and stability of sodium intercalated phases in olivine FePO\(_{4}\). Chem Mater 22:4126–4128. doi:10.1021/cm101377h

    Article  CAS  Google Scholar 

  15. Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA+\(U\). Phys Rev B 70:235121. doi:10.1103/PhysRevB.70.235121

    Article  Google Scholar 

  16. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G (2011) Calculations of Li-ion diffusion in olivine phosphates. Chem Mater 23:4032–4037. doi:10.1021/cm201604g

    Article  CAS  Google Scholar 

  17. Wang L, Zhou F, Meng YS, Ceder G (2007) First-principles study of surface properties of \(\text{ LiFePO }_4\): surface energy, structure, Wulff shape, and surface redox potential. Phys Rev B 76:165435. doi:10.1103/PhysRevB.76.165435

    Article  Google Scholar 

  18. Burbano M, Carlier D, Boucher F, Morgan BJ, Salanne M (2016) Sparse cyclic excitations explain the low ionic conductivity of stoichiometric \(\text{ Li }_{7}\text{ La }_{3}\text{ Zr }_{2}\text{ O }_{12}\). Phys Rev Lett 116:135901. doi:10.1103/PhysRevLett.116.135901

    Article  Google Scholar 

  19. Boulfelfel SE, Seifert G, Leoni S (2011) Atomistic investigation of Li+ diffusion pathways in the olivine \(\text{ LiFePO }_{4}\) cathode material. J Mater Chem 21:16365–16372. doi:10.1039/C1JM10725A

    Article  CAS  Google Scholar 

  20. Tealdi C, Spreafico C, Mustarelli P (2012) Lithium diffusion in Li\(_{1-x}\)FePO\(_{4}\): the effect of cationic disorder. J Mater Chem 22:24870–24876. doi:10.1039/C2JM35585J

    Article  CAS  Google Scholar 

  21. Yang J, Tse JS (2011) Li ion diffusion mechanisms in LiFePO\(_{4}\): an ab Initio molecular dynamics study. J Phys Chem A 115:13045–13049. doi:10.1021/jp205057d

    Article  CAS  Google Scholar 

  22. Wee C, Samson M, Reich S, Akhmatskaya E (2008) Improved sampling for simulations of interfacial membrane proteins: application of generalized shadow hybrid Monte Carlo to a peptide toxin/bilayer system. J Phys Chem B 112:5710–5717. doi:10.1021/jp076712u

    Article  CAS  Google Scholar 

  23. Akhmatskaya E, Reich S (2011) Meso-GSHMC: a stochastic algorithm for meso-scale constant temperature simulations. Procedia Comput Sci 4:1353–1362. doi:10.1016/j.procs.2011.04.146

    Article  Google Scholar 

  24. Escribano B, Akhmatskaya E, Reich S, Azpiroz J (2015) Multiple-time-stepping generalized hybrid Monte Carlo methods. J Comput Phys 280:1–20. doi:10.1016/j.jcp.2014.08.052

    Article  Google Scholar 

  25. Galceran M, Saurel D, Acebedo B, Roddatis VV, Martin E, Rojo T, Casas-Cabanas M (2014) The mechanism of NaFePO\(_{4}\) (de)sodiation determined by in situ X-ray diffraction. Phys Chem Chem Phys 16:8837–8842. doi:10.1039/C4CP01089B

    Article  CAS  Google Scholar 

  26. Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO\(_{4}\) cathode material for lithium-ion batteries. Energy Environ Sci 4:269–284. doi:10.1039/C0EE00029A

    Article  CAS  Google Scholar 

  27. Zhu Y, Xu Y, Liu Y, Luo C, Wang C (2013) Comparison of electrochemical performances of olivine NaFePO\(_{4}\) in sodium-ion batteries and olivine LiFePO\(_{4}\) in lithium-ion batteries. Nanoscale 5:780–787. doi:10.1039/C2NR32758A

    Article  CAS  Google Scholar 

  28. Saracibar A, Carrasco J, Saurel D, Galceran M, Acebedo B, Anne H, Lepoitevin M, Rojo T, Casas Cabanas M (2016) Investigation of sodium insertion-extraction in olivine \(\text{ Na }_{x}\text{ FePO }_{4}\) (\(0 \le x \le 1\)) using first-principles calculations. Phys Chem Chem Phys 18:13045–13051. doi:10.1039/C6CP00762G

    Article  CAS  Google Scholar 

  29. Whiteside A, Fisher C, Parker S, Islam MS (2014) Particle shapes and surface structures of olivine \(\text{ NaFePO }_4\) in comparison to \(\text{ LiFePO }_4\). Phys Chem Chem Phys 16:21788–21794. doi:10.1039/C4CP02356K

    Article  CAS  Google Scholar 

  30. Dick BG, Overhauser AW (1958) Theory of the dielectric constants of alkali halide crystals. Phys Rev 112:90–103. doi:10.1103/PhysRev.112.90

    Article  CAS  Google Scholar 

  31. Lindan P, Gillan M (1993) Shell-model molecular dynamics simulation of superionic conduction in \(\text{ CaF }_2\). J Phys Condens Matter 5:1019. doi:10.1088/0953-8984/5/8/005

    Article  CAS  Google Scholar 

  32. Mitchell P, Fincham D (1993) Shell model simulations by adiabatic dynamics. J Phys Condens Matter 5:1031. doi:10.1088/0953-8984/5/8/006

    Article  CAS  Google Scholar 

  33. Akhmatskaya E, Reich S (2008) GSHMC: an efficient method for molecular simulation. J Comput Phys 227:4934–4954. doi:10.1016/j.jcp.2008.01.023

    Article  Google Scholar 

  34. Akhmatskaya E, Reich S (2012) New Hybrid Monte Carlo methods for efficient sampling: from physics to biology and statistics. Prog Nucl Sci Technol 2:447–462. doi:10.15669/pnst.2.447

    Article  Google Scholar 

  35. Akhmatskaya E, Nobes R, Reich S (2011) Method, apparatus and computer program for molecular simulation. Patent US007908129 4:1353–1362

  36. Escribano B, Akhmatskaya E, Mujika J (2013) Combining stochastic and deterministic approaches within high efficiency molecular simulations. Cent Eur J Math 11:787–799. doi:10.2478/s11533-012-0164-x

    Google Scholar 

  37. Fernández-Pendás M, Escribano B, Radivojević T, Akhmatskaya E (2014) Constant pressure hybrid Monte Carlo simulations in GROMACS. J Mol Model. doi:10.1007/s00894-014-2487-y

    Google Scholar 

  38. Mujika JI, Escribano B, Akhmatskaya E, Ugalde JM, Lopez X (2012) Molecular dynamics simulations of iron- and aluminum-loaded serum transferrin: protonation of Tyr188 Is necessary to prompt metal release. Biochemistry 51:7017–7027. doi:10.1021/bi300584p

    Article  CAS  Google Scholar 

  39. Duane S, Kennedy A, Pendleton B, Roweth D (1987) Hybrid Monte Carlo. Phys Lett B 195:216–222. doi:10.1016/0370-2693(87)91197-X

    Article  CAS  Google Scholar 

  40. Hairer E, Lubich C, Wanner G (2002) Geometric numerical integration. Springer, Berlin

    Book  Google Scholar 

  41. Skeel R, Hardy D (2001) Practical construction of modified Hamiltonians. SIAM J Sci Comput 23:1172–1188. doi:10.1137/S106482750138318X

    Article  Google Scholar 

  42. Radivojević T (2016) Enhancing sampling in computational statistics using modified Hamiltonians. Ph. D. thesis, University of the Basque Country. http://hdl.handle.net/20.500.11824/323. Accessed 15 Nov 2016

  43. McLachlan RI (1995) On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J Sci Comput 16:151–168. doi:10.1137/0916010

    Article  Google Scholar 

  44. Blanes S, Casas F, Sanz-Serna JM (2014) Numerical integrators for the Hybrid Monte Carlo method. SIAM J Sci Comput 36(4):A1556–A1580. doi:10.1137/130932740

    Article  Google Scholar 

  45. Fernández-Pendás M, Akhmatskaya E, Sanz-Serna JM (2016) Adaptive multi-stage integrators for optimal energy conservation in molecular simulations. J Comput Phys 327:434–449. doi:10.1016/j.jcp.2016.09.035

    Article  Google Scholar 

  46. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447. doi:10.1021/ct700301q

    Article  CAS  Google Scholar 

  47. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  48. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  50. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  51. Boucher F, Gaubicher J, Cuisinier M, Guyomard D, Moreau P (2014) Elucidation of the \(\text{ Na }_{2/3}\text{ FePO }_4\) and \(\text{ Li }_{2/3}\text{ FePO }_4\) intermediate superstructure revealing a pseudouniform ordering in 2D. J Am Chem Soc 136:9144–9157. doi:10.1021/ja503622y

    Article  CAS  Google Scholar 

  52. Lu J, Chung SC, Si Nishimura, Yamada A (2013) Phase diagram of olivine \(\text{ Na }_{x}\text{ FePO }_4\) (\(0 < x < 1\)). Chem Mater 25:4557–4565. doi:10.1021/cm402617b

    Article  CAS  Google Scholar 

  53. Galceran M, Roddatis V, Zúñiga FJ, Pérez-Mato JM, Acebedo B, Arenal R, Peral I, Rojo T, Casas-Cabanas M (2014) Na-vacancy and charge ordering in \(\text{ Na }\approx {2/3}\text{ FePO }_4\). Chem Mater 26:3289–3294. doi:10.1021/cm501110v

    Article  CAS  Google Scholar 

  54. Casas-Cabanas M, Roddatis VV, Saurel D, Kubiak P, Carretero-Gonzalez J, Palomares V, Serras P, Rojo T (2012) Crystal chemistry of Na insertion/deinsertion in \(\text{ FePO }_4{-}\text{ NaFePO }_4\). J Mater Chem 22:17421–17423. doi:10.1039/C2JM33639A

    Article  CAS  Google Scholar 

  55. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  56. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72:2384–2393. doi:10.1063/1.439486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by grant MTM2013-46553-C3-1-P funded by MINECO (Spain). B.E. acknowledges the Iberdrola Foundation “Grants for Research in Energy and Environment 2014”. E.A. and T.R. thank for support Basque Government—ELKARTEK Programme, grant KK-2016/00026. The SGI/IZO-SGIker UPV/EHU and the i2BASQUE academic network are acknowledged for computational resources. M.F.P. would like to thank the Spanish Ministry of Economy and Competitiveness for funding through the fellowship BES-2014-068640. This research was supported by the Basque Government through the BERC 2014-2017 program and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Escribano.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escribano, B., Lozano, A., Radivojević, T. et al. Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine \(\hbox {NaFePO}_4\) . Theor Chem Acc 136, 43 (2017). https://doi.org/10.1007/s00214-017-2064-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2064-4

Keywords

Navigation