Skip to main content
Log in

Electronic spectroscopy of a solvatochromic dye in water: comparison of static cluster/implicit and dynamical/explicit solvent models on structures and energies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this study, we analyze the photophysics of the N-methyl-6-oxyquinolinium betaine (MQ) solvatochromic dye in aqueous solution, focussing on the important structural rearrangement of its first solvation shell following the electronic excitation, which is characterized by a strong charge transfer. To this aim, we compare the results provided by ground- and excited-state ab-initio molecular dynamics with that of full QM calculations on clusters including a small number of solvent molecules (from 1 to 4), taking into account bulk solvent effects by the Polarizable Continuum Model. The two methods agree in predicting that while in the ground electronic state between three and four water molecules are strongly coordinated to the oxygen atom of MQ, in the excited state two water molecules are present in the first solvation layer of the MQ oxygen. Vertical excitation and emission energies computed on the structures provided by the two approaches allow for estimates of the Stokes shift consistent with the experimental results. On the ground of the present results, some general considerations on the advantages and limitations of the dynamical and static approaches in describing a photoactivated process in solution are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tkachenko N (2006) Optical spectroscopy methods and instrumentations. Elsevier, Amsterdam

    Google Scholar 

  2. Laane J, Takahashi H, Bandrauk A (1998) Structure and dynamics of electronic excited states (Eds., Springer, Berlin)

  3. Wang C (1985) Spectroscopy of condensed media. Academic Press, New York

    Google Scholar 

  4. Horbg ML, Gardecki JA, Papazyan A, Maroncelli M (1995) J Phys Chem 99:17311

  5. Lustres LP, Kovalenko SA, Mosquera M, Senyushkina T, Flasche W, Ernsting NP (2005) Angew Chem Int Ed 44:5635

    Article  CAS  Google Scholar 

  6. Improta R (2011) In computational strategies for spectroscopy: from small molecules to nanosystems, ed. Barone V (Wiley, Chichester, 2011), chap. 1, pp 39–76

  7. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ (2001) J Chem Phys 114:9758

    Article  CAS  Google Scholar 

  8. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2001) J Chem Phys 115:10291

    Article  CAS  Google Scholar 

  9. Bunker DL (1971) Meth Comp Phys 10:287

    CAS  Google Scholar 

  10. Raff LM, Thompson DL (1985) Theory of chemical reaction dynamics. CRC, Boca Raton

    Google Scholar 

  11. Brancato G, Rega N, Barone V (2008) J Chem Phys 128:144501

    Article  Google Scholar 

  12. Brancato G, Rega N (2011) In Computational strategies for spectroscopy: from small molecules to nanosystems, ed. by Barone V (Wiley, Chichester, 2011), chap. 1, pp. 517–547

  13. Improta R, Barone V, Santoro F (2007) J Phys Chem B 111:14080

    Article  CAS  Google Scholar 

  14. Marcus A (1989) J Phys Chem 93:3078

    Article  CAS  Google Scholar 

  15. Gustavsson T, Improta R, Markovitsi D (2010) J Phys Chem Lett 1:2025

    Article  CAS  Google Scholar 

  16. Biemann L, Kovalenko S, Kleinermanns K, Mahrwald R, Markert M, Improta R (2011) J Am Chem Soc 133:19664

    Article  CAS  Google Scholar 

  17. Improta R, Barone V (2004) J Am Chem Soc 126:14320

    Article  CAS  Google Scholar 

  18. Gustavsson T, Banyasz A, Lazzarotto E, Markovitsi D, Scalmani G, Frisch M, Barone V, Improta R (2006) J Am Chem Soc 128:607

    Article  CAS  Google Scholar 

  19. Mercier Y, Santoro F, Reguero M, Improta R (2008) J Phys Chem B 112:10769

    Article  CAS  Google Scholar 

  20. Santoro F, Barone V, Gustavsson T, Improta R (2006) J Am Chem Soc 128:16312

    Article  CAS  Google Scholar 

  21. Gustavsson T, Sarkar N, Vaya I, Jimenez M, Markovitsi D, Improta R (2013) Photochem Photobiol Sci 12:1375

    Article  CAS  Google Scholar 

  22. Petrone A, Caruso P, Tenuta S, Rega N (2013) Phys Chem Chem Phy 15(47):20536

    Article  CAS  Google Scholar 

  23. Avila Ferrer FJ, Davari MD, Morozov D, Groenhof G, Santoro F (2014) Chem Phys Chem pp 1–13

  24. Cerezo J, Ferrer FJA, Prampolini G, Santoro F (2015) J Chem Theory Comput 11:5810

    Article  CAS  Google Scholar 

  25. D'Abramo M, Aschi M, Amadei A (2014) J Chem Phys 140:164104

    Article  Google Scholar 

  26. Zalenśy R, Murugan NA, Gelmukhanov F, Rinkevicius Z, Ośmialowski B, Bartkowiak W, Ågren H (2014) J Phys Chem A

  27. Andrzej E (2014) Int J Quantum Chem 114:261

    Article  Google Scholar 

  28. Petrone A, Donati G, Caruso P, Rega N (2014) J Am Chem Soc 136(42):14866

    Article  CAS  Google Scholar 

  29. Pérez Lustres JL, Kovalenko Sa, Mosquera M, Senyushkina T, Flasche W, Ernsting NP (2005) Angew Chem Int Ed 44:5635

    Article  Google Scholar 

  30. Pérez-Lustres J, Rodriguez-Prieto F, Mosquera M, Senyushkina T, Ernsting N, Kovalenko S (2007) J Am Chem Soc 129(17):5408

    Article  Google Scholar 

  31. Sajadi M, Ajaj Y, Ioffe I, Weingärtner H, Ernsting N (2010) Angew Chem Int Ed 49(2):454

    Article  CAS  Google Scholar 

  32. Petrone A, Cerezo J, Ferrer FJA, Donati G, Improta R, Rega N, Santoro F (2015) J Phys Chem A 119(21):5426

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.2. Gaussian Inc. Wallingford CT

  34. Gross EKU, Kohn W (1985) Phys Rev Lett 55:2850

    Article  CAS  Google Scholar 

  35. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  37. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  38. Rega N, Brancato G, Barone V (2006) Chem Phys Lett 422:367

    Article  CAS  Google Scholar 

  39. Brancato G, Barone V, Rega N (2007) Theor Chem Acc 117:1001

    Article  CAS  Google Scholar 

  40. Schlegel HB, Iyengar SS, Li X, Millam JM, Voth GA, Scuseria GE, Frisch MJ (2002) J Chem Phys 117:8694

    Article  CAS  Google Scholar 

  41. Hase EWL (ed) (1991) Advances in classical trajectory methods. JAI, Stamford

    Google Scholar 

  42. Helgaker T, Uggerud E, Jensen HJA (1990) Chem Phys Lett 173:145

    Article  CAS  Google Scholar 

  43. Caillie CV, Amos RD (2000) Chem Phys Lett 317(12):159

    Article  Google Scholar 

  44. Furche F, Ahlrichs R (2002) J Chem Phys 117(16):7433

    Article  CAS  Google Scholar 

  45. Furche F, Ahlrichs R (2004) J Chem Phys 121(24):12772

    Article  CAS  Google Scholar 

  46. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124(9):094107

    Article  Google Scholar 

  47. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  48. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  49. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669

    Article  CAS  Google Scholar 

  50. Improta R, Barone V, Scalmani G, Frisch MJ (2006) J Chem Phys 125:054103

    Article  Google Scholar 

  51. Improta R, Scalmani G, Frisch MJ, Barone V (2007) J Chem Phys 127:074504

    Article  Google Scholar 

  52. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (Theochem) 462:1

    Article  Google Scholar 

  53. Vreven T, Byun KS, Komaromi I, Dapprich S, Montgomery Jr JA, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2, 815–826

  54. Vreven T, Morokuma K (2006) Annual reports in computational chemistry (vol.2, pp 35–51, Ed. Spellmeyer DC)

  55. Clemente F, Vreven T, Frish MJ (2008) Quantum biochemistry. (Ed. Matta C, Wiley VCH, 2008)

  56. Vreven T, Mennucci B, da Silva CO, Morokuma K, Tomasi J (2001) J Chem Phys 115:62

    Article  CAS  Google Scholar 

  57. Mo SJ, Vreven T, Mennucci B, Morokuma K, Tomasi J (2003) Theor Chem Acc 111:154

    Article  Google Scholar 

  58. Corni S, Cammi R, Mennucci B, Tomasi J (2005) J Chem Phys 123:134512

    Article  CAS  Google Scholar 

  59. Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405

    Article  CAS  Google Scholar 

  60. Improta R, Barone V, Santoro F (2007) J Phys Chem B 111(51):14080

    Article  CAS  Google Scholar 

  61. Avila Ferrer FJ, Improta R, Santoro F, Barone V (2011) Phys Chem Chem Phys 13:17007

    Article  Google Scholar 

  62. Avila Ferrer FJ, Cerezo J, Soto J, Improta R, Santoro F (2014) Comput Theoret Chem 1040–1041, 328–337

  63. Improta R, Barone V (2009) J Mol Struct Theochem 914:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of MIUR (FIRB ‘Futuro in Ricerca’ prot. RBFR10Y5VW, PRIN2009 prot. 2009PRAM8L, PRIN 2010-2011 prot. 2010ERFKXL) is acknowledged. JC acknowledges ‘Fundación Ramón Areces’ for funding his postdoctoral position, and the Pisa Unit of ICCOM-CNR Pisa for hospitality. FA acknowledges support from the Marie Curie COFUND program U-Mobility, co-financed by the University of Malaga, the European Commission FP7 under GA No. 246550 and Ministerio de Economiá y Competitividad (COFUND201340259). AP, GD and NR thank Gaussian Inc. (Wallingford, CT) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabrizio Santoro, Roberto Improta or Nadia Rega.

Additional information

Javier Cerezo and Alessio Petrone contributed equally to the work.

Published as part of the special collection of articles “Charge Transfer Modeling in Chemistry”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1861 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerezo, J., Petrone, A., Ferrer, F.J.A. et al. Electronic spectroscopy of a solvatochromic dye in water: comparison of static cluster/implicit and dynamical/explicit solvent models on structures and energies. Theor Chem Acc 135, 263 (2016). https://doi.org/10.1007/s00214-016-2009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-2009-3

Keywords

Navigation