Skip to main content
Log in

Ruthenocene and cyclopentadienyl pyrrolyl ruthenium as precursors for ruthenium atomic layer deposition: a comparative study of dissociation enthalpies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

RuCp2 (ruthenocene) and RuCpPy (cyclopentadienyl pyrrolyl ruthenium) complexes are used in ruthenium (Ru) atomic layer deposition (ALD) but exhibit a markedly different reactivity with respect to the substrate and co-reactant. In search of an explanation, we report here the results of a comparative study of the heterolytic and homolytic dissociation enthalpy of these two ruthenium complexes, making use of either density functional theory (DFT) or multiconfigurational perturbation theory (CASPT2). While both methods predict distinctly different absolute dissociation enthalpies, they agree on the relative values between both molecules. A reduced heterolytic dissociation enthalpy is obtained for RuCpPy compared to RuCp2, although the difference obtained from CASPT2 (19.9 kcal/mol) is slightly larger than the one obtained with any of the DFT functionals (around 17 kcal/mol). Both methods also agree on the more pronounced stability of the Cp ligand in RuCpPy than in RuCp2 (by around 9 kcal/mol with DFT and by 6 kcal/mol with CASPT2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. George SM (2010) Chem Rev 110:111

    Article  CAS  Google Scholar 

  2. Knez M, Nielsch K, Niinistö L (2007) Adv Mater 19:3425

    Article  CAS  Google Scholar 

  3. Bohr M, Chau R, Ghani T, Mistry K (2007) Spectrum, IEEE 44:29

    Article  Google Scholar 

  4. Aaltonen T, Alén P, Ritala M, Leskelä M (2003) Chem Vap Deposition 9:45

    Article  CAS  Google Scholar 

  5. Kukli K, Kemell M, Puukilainen E, Aarik J, Aidla A, Sajavaara T, Laitinen M, Tallarida M, Sundqvist J, Ritala M, Leskelä M (2011) J Electrochem Soc 158:D158

    Article  CAS  Google Scholar 

  6. Swerts J, Salimullah MM, Popovici M, Kim MS, Pawlak MA, Delabie A, Schaekers M, Tomida K, Kaczer B, Opsomer K, Vrancken C, Debusschere I, Altimime L, Kittl JA, Van Elshocht S (2011) ECS Trans 41:41

    Article  CAS  Google Scholar 

  7. Elliott SD (2010) Langmuir 26:9179

    Article  CAS  Google Scholar 

  8. Phung QM, Vancoillie S, Pierloot K (2012). J Chem Theory Comput 8:883

    Google Scholar 

  9. Ahlrichs R, Bär M, Häser M, Horn H, Kälmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  10. Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PÅ, Neogrády P, Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban M, Veryazov V, Lindh R (2010) J Comput Chem 31:224

    Article  CAS  Google Scholar 

  11. Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  12. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    Article  CAS  Google Scholar 

  13. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theoretica Chimica Acta 77:123

    Article  CAS  Google Scholar 

  14. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  15. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2005) J Phys Chem A 109:6575

    Article  CAS  Google Scholar 

  16. Roos BO, Lindh R, Malmqvist PÅ, Veryazov V, Widmark PO (2004) J Phys Chem A 108:2851

    Article  CAS  Google Scholar 

  17. Widmark PO, Malmqvist PÅ, Roos BO (1990) Theor Chem Acc 77:291

    Article  CAS  Google Scholar 

  18. Vancoillie S, Zhao H, Tran VT, Hendrickx MFA, Pierloot K (2011) J Chem Theory Comput 7:3961

    Article  CAS  Google Scholar 

  19. Aquilante F, Malmqvist PÅ, Pedersen TB, Ghosh A, Roos BO (2008) J Chem Theory Comput 4:694

    Article  CAS  Google Scholar 

  20. Hess BA (1986) Phys Rev A 33:3742

    Article  CAS  Google Scholar 

  21. Reiher M, Wolf A (2004) J Chem Phys 121:2037

    Article  CAS  Google Scholar 

  22. Reiher M, Wolf A (2004) J Chem Phys 121:10945

    Article  CAS  Google Scholar 

  23. Ghigo G, Roos BO, Malmqvist PÅ (2004) Chem Phys Lett 396:142

    Article  CAS  Google Scholar 

  24. Forsberg N, Malmqvist PÅ (1997) Chem Phys Lett 274:196

    Article  CAS  Google Scholar 

  25. Pierloot K, Vancoillie S (2006) J Chem Phys 125:124303

    Article  Google Scholar 

  26. Pierloot K (2001) In: Cundari TR (ed.) Computational organometallic chemistry, pp 123–158. Marcel Dekker, Inc., New York

  27. Seiler P, Dunitz JD (1980) Acta Crystallogr Sect B 36:2946

    Article  Google Scholar 

  28. Waller MP, Braun H, Hojdis N, Bühl M (2007) J Chem Theory Comput 3:2234

    Article  CAS  Google Scholar 

  29. Callender CL, Hackett PA, Rayner DM (1988) J Opt Soc Am B 5:614

    Article  CAS  Google Scholar 

  30. Shenstone AG, Meggers WF (1958) J Res Natl Bur Stand (US) 61:373

    CAS  Google Scholar 

  31. Ichino T, Wren SW, Vogelhuber KM, Gianola AJ, Lineberger WC, Stanton JF (2008) J Chem Phys 129:084310

    Article  Google Scholar 

  32. Gianola AJ, Ichino T, Hoenigman RL, Kato S, Bierbaum VM, Lineberger WC (2004) J Phys Chem A 108:10326

    Article  CAS  Google Scholar 

  33. Wu Z, Kawazoe Y (2006) Chem Phys Lett 423:81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by grants from the Flemish Science Foundation (FWO) and from the Concerted Research Action of the Flemish Government (GOA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Vancoillie.

Additional information

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (53 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phung, Q.M., Vancoillie, S., Delabie, A. et al. Ruthenocene and cyclopentadienyl pyrrolyl ruthenium as precursors for ruthenium atomic layer deposition: a comparative study of dissociation enthalpies. Theor Chem Acc 131, 1238 (2012). https://doi.org/10.1007/s00214-012-1238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1238-3

Keywords

Navigation