Skip to main content
Log in

Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

In this contribution, we focused on the use of polarizable force fields to model the structural, energetic, and thermodynamical properties of lanthanides and actinides in water. In a first part, we chose the particular case of the Th(IV) cation to demonstrate the capabilities of the AMOEBA polarizable force field to reproduce both reference ab initio gas-phase energetics and experimental data including coordination numbers and radial distribution functions. Using such model, we predicted the first polarizable force field estimate of Th(IV) solvation free energy, which accounts for −1,638 kcal/mol. In addition, we proposed in a second part of this work a full extension of the SIBFA (Sum of Interaction Between Fragments Ab initio computed) polarizable potential to lanthanides (La(III) and Lu(III)) and to actinides (Th(IV)) in water. We demonstrate its capabilities to reproduce all ab initio contributions as extracted from energy decomposition analysis computations, including many-body charge transfer and discussed its applicability to extended molecular dynamics and its parametrization on high-level post-Hartree–Fock data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merbach AE, Toth E (2001) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Chichester

    Google Scholar 

  2. Nicholas LK, Long NJ (2006) Chem Soc Rev 35:557

    Article  Google Scholar 

  3. Moore EG, Samuel APS, Raymond KN (2009) Acc Chem Res 42:542

    Article  CAS  Google Scholar 

  4. Hou ZM, Wakatsuki Y (2002) Coord Chem Rev 231:1

    Article  CAS  Google Scholar 

  5. Silva R, Nitsche H (1995) Radiochim Acta 70:377

    Google Scholar 

  6. Grenthe I, Fuger J, Konings R, Lemire R, Muller A, Nguyen-Trung C, Wanner H (1992) In: Wanner H, Forest I (eds) Chemical thermodynamics of Uranium. North-Holland, Amsterdam

  7. Nash KL, Madic C, Mathur JN (2006) Actinide separation science and technology. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht

  8. Clavaguéra C, Calvo F, Dognon J-P (2006) J Chem Phys 124:074505

    Article  Google Scholar 

  9. Clavaguéra C, Sansot E, Calvo F, Dognon J-P (2006) J Phys Chem B 110:12848

    Article  Google Scholar 

  10. Clavaguéra C, Pollet R, Soudan JM, Brenner V, Dognon J-P (2005) J Phys Chem B 109:7614

    Article  Google Scholar 

  11. Hagberg D, Karlström G, Roos BJ, Gagliardi L (2005) J Am Chem Soc 127:14250

    Article  CAS  Google Scholar 

  12. Hagberg D, Bednarz E, Edelstein NM, Gagliardi L (2007) J Am Chem Soc 129:14136

    Article  CAS  Google Scholar 

  13. Villa A, Hess B, Saint-Martin H (2009) J Phys Chem B 113:7270

    Article  CAS  Google Scholar 

  14. Duvail M, Vitorge P, Spezia R (2009) J Chem Phys 130:104501

    Article  Google Scholar 

  15. Beuchat C, Hagberg D, Spezia R, Gagliardi L (2010) J Phys Chem B 114:15590

    Article  CAS  Google Scholar 

  16. Galbis E, Hernández-Cobos J, den Auwer C, Le Naour C, Guillaumont D, Simoni E, Pappalardo RR, Sánchez ME (2010) Angew Chem Int Ed 49:3811

    Article  CAS  Google Scholar 

  17. Réal F, Trumm M, Vallet V, Schimmelpfennig B, Masella M, Flament J-P (2010) J Phys Chem B 114:15913

    Article  Google Scholar 

  18. Duvail M, Spezia R, Vitorge P (2008) Chem Phys Chem 9:693

    Article  CAS  Google Scholar 

  19. Duvail M, Martelli F, Vitorge P, Spezia R (2011) J Chem Phys 135:044503

    Article  Google Scholar 

  20. Kowall Th, Foglia F, Helm K, Merbach AE (1995) J Am Chem Soc 117:13790

    Article  Google Scholar 

  21. D’Angelo P, Zitolo A, Migliorati V, Chillemi G, Duvail M, Vitorge P, Abadie S, Spezzia R (2011) Inorg Chem 50:4572

    Article  Google Scholar 

  22. Helm L, Merbach AE (2005) Chem Rev 105:1923

    Article  CAS  Google Scholar 

  23. Clavaguéra-Sarrio C, Brenner V, Hoyau S, Marsden CJ, Millié P, Dognon J-P (2003) J Phys Chem B107:3051

    Google Scholar 

  24. Engkvist O, Åstrand PO, Karlström G (2000) Chem Rev 100:4087

    Article  CAS  Google Scholar 

  25. Ren P, Ponder JW (2003) J Phys Chem B 107:5933

    Article  CAS  Google Scholar 

  26. Shi Y, Wu C, Ponder JW, Ren P (2011) J Comput Chem 32:967

    Article  CAS  Google Scholar 

  27. Wu J, Piquemal J-P, Chaudret R, Reinhardt P, Ren P (2010) J Chem Theory Comput 6:2059

    Article  CAS  Google Scholar 

  28. Piquemal J-P, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA (2006) J Chem Phys 125:054511

    Article  Google Scholar 

  29. Jiao D, King C, Grossfield A, Darden TA, Ren P (2006) J Phys Chem B 110:18553

    Article  CAS  Google Scholar 

  30. Grossfield A, Ren P, Ponder JW (2003) J Am Chem Soc 125:15671

    Article  CAS  Google Scholar 

  31. Gresh N, Cisneros GA, Darden TA, Piquemal J-P (2007) J Chem Theory Comput 3:1960

    Article  CAS  Google Scholar 

  32. Piquemal J-P, Williams-Hubbard B, Fey N, Deeth RJ, Gresh N, Giessner-Prettre C (2003) J Comput Chem 24:1963

    Article  CAS  Google Scholar 

  33. Gresh N, Piquemal J-P, Krauss M (2005) J Comput Chem 26:1113

    Article  CAS  Google Scholar 

  34. Roux C, Gresh N, Perera L, Piquemal J-P, Salmon L (2007) J Comput Chem 28:938

    Article  CAS  Google Scholar 

  35. Jenkins LMM, Hara T, Durell SR, Hayashi R, Inman JK, Piquemal J-P, Gresh N, Appella E (2007) J Am Chem Soc 129:11067

    Article  Google Scholar 

  36. Gourlaouen C, Clavaguéra C, Piquemal J-P, Dognon J-P (2012) submitted

  37. Simah D, Hartke B, Werner H-J (1999) J Chem Phys 111:4523

    Article  CAS  Google Scholar 

  38. Werner HJ, Knowles PJ with contributions from Almlof J, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Lindh R, Lloyd AW, Meyer W, Mura ME, Nicklass A, Peterson K, Pitzer R, Pulay P, Rauhut G, Schutz M, Stoll H, Stone AJ, Taylor PR, Thorsteinsson T (2008) Molpro, version 2008.1. University of Stuttgart and Birmingham, Germany and Great Britain

  39. Benedict WS, Gailar N, Plyler EK (1956) J Chem Phys 24:1139

    Article  CAS  Google Scholar 

  40. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09. Gaussian Inc., Wallingford, CT

    Google Scholar 

  42. Bagus PS, Hermann K, Bauschlicher CW Jr (1984) J Chem Phys 81:1966

    Article  CAS  Google Scholar 

  43. Piquemal J-P, Marquez A, Parisel O, Giessner-Prettre C (2005) J Comput Chem 26:1052

    Article  CAS  Google Scholar 

  44. Dupuis M, Marquez A, Davidson ER HONDO95.3, Quantum Chemistry Program Exchange (QCPE). Indiana University, Bloomington, IN 47405

  45. Stevens WJ, Fink W (1987) Chem Phys Lett 139:15–22

    Article  CAS  Google Scholar 

  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  47. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325

    Article  CAS  Google Scholar 

  48. Cisneros GA, Darden TA, Gresh N, Reinhardt P, Parisel P, Pilmé J, Piquemal J-P (2009) In: York DM, Lee T-S (eds) Multi-scale quantum models for biocatalysis: modern techniques and applications, for the book series: challenges and advances in computational chemistry and physics. Springer, Berlin, pp 137–172

  49. Vigné-Maeder F, Claverie P (1988) J Chem Phys 88:4934

    Article  Google Scholar 

  50. Piquemal J-P, Gresh N, Giessner-Prettre C (2003) J Phys Chem A 107:10353

    Article  CAS  Google Scholar 

  51. Piquemal J-P, Chevreau H, Gresh N (2007) J Chem Theory Comput 3:824

    Article  CAS  Google Scholar 

  52. Garmer DR, Stevens WJ (1989) J Chem Phys 93:8263

    Article  CAS  Google Scholar 

  53. Chaudret R, Gresh N, Parisel O, Piquemal J-P (2011) J Comput Chem 7:618

    Article  Google Scholar 

  54. Tholé BT (1981) Chem Phys 59:341

    Article  Google Scholar 

  55. Halgren TA (1992) J Am Chem Soc 114:7827

    Article  CAS  Google Scholar 

  56. Réal F, Vallet V, Clavaguéra C, Dognon JP (2008) Phys Rev A 78:052502

    Article  Google Scholar 

  57. Nose S (1984) J Chem Phys 81:511–519

    Article  CAS  Google Scholar 

  58. Hoover WG (1985) Phys Rev A 31:1695

    Article  Google Scholar 

  59. Beeman D (1976) J Comp Phys 20:130

    Article  Google Scholar 

  60. Ponder JW (2009) TINKER: software tools for molecular design, version 6.2. Washington University School of Medicine, Saint Louis

  61. Essmann U, Perera L, Berkowitz ML, Darden T, Lee L, Pedersen LG (1995) J Chem Phys 101:8577

    Article  Google Scholar 

  62. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  63. Wilson RE, Skanthakumar S, Burns PC, Soderholm L (2007) Angew Chem 119:8189

    Article  Google Scholar 

  64. Torapava N, Persson I, Eriksson L, Lundberg D (2009) Inorg Chem 48:11712

    Article  CAS  Google Scholar 

  65. Farkas I, Grenthe IJ (2000) Phys Chem A 104:1201

    Article  CAS  Google Scholar 

  66. Bennett CH (1976) J Comput Phys 22:245

    Article  Google Scholar 

  67. David FH, Vokhmin V (2003) New J Chem 27:1627

    Article  CAS  Google Scholar 

  68. Marcus YA (1994) Biophys Chem 51:111

    Article  CAS  Google Scholar 

  69. Devereux M, van Severen M-C, Parisel O, Piquemal J-P, Gresh N (2011) J Chem Theory Comput 7:138

    Article  CAS  Google Scholar 

  70. Piquemal J-P, Cisneros GA, Reinhardt P, Gresh N, Darden TA (2006) J Chem Phys 124:104101

    Article  Google Scholar 

  71. Chaudret R, Gresh N, Darden TA, Parisel O, Cisneros GA, Piquemal J-P (2011) J Chem Phys 2012 (in press)

Download references

Acknowledgments

Two of the authors, C. G. and J.-P. D., thank the direction of simulation and experimental tools of the CEA nuclear energy division CEA/DEN/RBPCH for financial support. This work was granted access to the HPC resources of [CCRT/CINES/IDRIS] under the allocation x2011086146 made by GENCI (Grand Equipement National de Calcul Intensif).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carine Clavaguéra, Jean-Pierre Dognon or Jean-Philip Piquemal.

Additional information

Published as part of the special collection of articles: From quantum mechanics to force fields: new methodologies for the classical simulation of complex systems.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 985 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marjolin, A., Gourlaouen, C., Clavaguéra, C. et al. Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies. Theor Chem Acc 131, 1198 (2012). https://doi.org/10.1007/s00214-012-1198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1198-7

Keywords

Navigation