Skip to main content
Log in

Interaction of chemically modified tetracyclines with catalytic Zn(II) ion in matrix metalloproteinase: evidence for metal coordination sites

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Chemically modified tetracyclines (CMTs) have shown promising activity as matrix metalloproteinase (MMP) inhibitors acting as zinc-binding groups. The first step in the design of new and effective drugs is the molecular description of the mechanism of action in chemical and biological environments. In the present study, the structure and stability of [Zn(LH n )(H2O)2]2−x (n = 0, 1, 2 and x = −2, −1, 0) and [Zn(L)(His)3], where L represents five distinct, structurally related CMTs, are discussed. In addition to the effect of the ligand on Zn(II) coordination, the role of the solvent and pH was also determined. The results suggested that O1–Oam (labeled as site II in the present paper) of CMT-1, CMT-4 and CMT-7 was the most stable site in the gas phase and aqueous solution. However, for CMT-3 and CMT-8, coordination at the O11–O12 moiety (site VI) was preferred. This coordination site is an essential binding mode of CMTs with active zinc in the MMP catalytic site; therefore, our results support the singular behavior of CMT-3 and CMT-8 as promising MMP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nuti E, Tuccinardi T, Rossello A (2007) Curr Pharm Des 13:2087–2100

    Article  CAS  Google Scholar 

  2. Murphy G, Nagase H (2008) Mol Aspects Med 29:290–308

    Article  CAS  Google Scholar 

  3. Roy R, Yang J, Moses MA (2009) J Clin Oncol 27:5287–5297

    Article  CAS  Google Scholar 

  4. Tu GG, Xu WF, Huang HM, Li SH (2008) Curr Med Chem 15:1388–1395

    Article  CAS  Google Scholar 

  5. Jacobsen JA, Jourden JLM, Miller MT, Cohen SM (2010) Biochim Biophys Acta 1803:72–94

    Article  CAS  Google Scholar 

  6. Gupta SP (2007) Chem Rev 107:3042–3087

    Article  CAS  Google Scholar 

  7. Rowsell S, Hawtin P, Minshull CA, Jepson H, Brockbank SMV, Barratt DG, Slater AM, McPheat WL, Waterson D, Henney AM, Pauptit RA (2002) J Mol Biol 319:173–181

    Article  CAS  Google Scholar 

  8. Acharya MR, Venitz E, Figg WD, Sparreboom A (2004) Drug Resist. Updates 7:195–208

    Article  Google Scholar 

  9. Syed S, Takimoto C, Hidalgo M, Rizzo J, Kuhn JG, Hammond LA, Schwartz G, Tolcher A, Patnaik A, Eckhardt SG, Rowinsky EK (2004) Clin Cancer Res 10:6512–6521

    Article  CAS  Google Scholar 

  10. Lee H, Park JW, Kim SP, Lo EH, Lee SR (2009) Neurobiol Dis 34:189–198

    Article  CAS  Google Scholar 

  11. Shen LC, Chen YK, Lin LM, Shaw SY (2010) Oral Oncol 46:178–184

    Article  CAS  Google Scholar 

  12. Greenwald RA, Golub LM (2001) Curr Med Chem 8:237–242

    CAS  Google Scholar 

  13. Sandler C, Nurmi K, Lindstedt KA, Sorsa T, Golub LM, Kovanen PT, Eklund KK (2005) Int Immunopharmacol 5:1611–1621

    Article  CAS  Google Scholar 

  14. Seftor REB, Seftor EA, De Larco JE, Kleiner DE, Leferson J, Stetler-Stevenson WG, McNamara TF, Golub LM, Hendrix MJC (1998) Clin Exp Metastasis 16:217–225

    Article  CAS  Google Scholar 

  15. Liu Y, Ramamurthy NS, Marecek J, Lee HM, Chen JL, Ryan ME, Rifkin BR, Golub LM (2001) Curr Med Chem 8:243–252

    CAS  Google Scholar 

  16. Islam MM, Franco CD, Courtman DW, Bendeck MP (2003) Am J Pathol 163:1557–1566

    CAS  Google Scholar 

  17. Diaz N, Suarez D, Sordo TL (2006) J Phys Chem B 110:24222–24230

    Article  CAS  Google Scholar 

  18. Aly AAM, Strasser A, Vogler A (2002) Inorg Chem Commun 5:411–413

    Article  CAS  Google Scholar 

  19. Asleson GL, Frank CW (1975) J Am Chem Soc 97:6246–6248

    Article  CAS  Google Scholar 

  20. De Siqueira JM, Carvalho S, Paniago EB, Tosi L, Beraldo H (1994) J Pharm Sci 83:291–295

    Article  Google Scholar 

  21. Guerra W, Silva IR, Azevedo EA, Monteiro A, Bucciarelli-Rodriguez M, Chartone-Souza E, Silveira JN, Fontes APS, Pereira-Maia EC (2006) J Braz Chem Soc 17:1627–1633

    Article  CAS  Google Scholar 

  22. Lee JY, Everett GW (1981) J Am Chem Soc 103:5221–5225

    Article  CAS  Google Scholar 

  23. Machado FC, Demicheli C, Garniersuillerot A, Beraldo H (1995) J Inorg Biochem 60:163–173

    Article  CAS  Google Scholar 

  24. Wessels JM, Ford WE, Szymczak W, Schneider S (1998) J Phys Chem B 102:9323–9331

    Article  CAS  Google Scholar 

  25. Meindl K, Clark T (2005) J Phys Chem B 109:4279–4284

    Article  CAS  Google Scholar 

  26. Leypold CF, Marian DT, Roman C, Schneider S, Schubert P, Scholz O, Hillen W, Clark T, Lanig H (2004) Photochem Photobiol Sci 3:109–119

    Article  CAS  Google Scholar 

  27. Othersen OG, Lanig H, Clark T (2006) J Mol Model 12:953–963

    Article  CAS  Google Scholar 

  28. Aleksandrov A, Simonson T (2006) J Comput Chem 27:1517–1533

    Article  CAS  Google Scholar 

  29. Duarte HA, Carvalho S, Paniago EB, Simas AM (1999) J Pharm Sci 88:111–120

    Article  CAS  Google Scholar 

  30. Marcial BL, Costa LAS, De Almeida WB, Dos Santos HF (2008) J Braz Chem Soc 19:1437–1449

    Article  CAS  Google Scholar 

  31. Dos Santos HF, Marcial BL, De Miranda CF, Costa LAS, De Almeida WB (2006) J Inorg Biochem 100:1594–1605

    Article  CAS  Google Scholar 

  32. Marcial BL, Costa LAS, De Almeida WB, Dos Santos HF (2009) J Mol Struct (Theochem) 916:94–104

    Article  CAS  Google Scholar 

  33. Dos Santos HF, De Almeida WB, Zerner MC (1998) J Chem Soc Perkin Trans 2:2519–2525

    Google Scholar 

  34. Dos Santos HF, Xavier ES, Zerner MC, De Almeida WB (2000) J Mol Struct (Theochem) 527:193–202

    Article  CAS  Google Scholar 

  35. De Almeida WB, Dos Santos HF, Zerner MC (1998) J Pharm Sci 87:1101–1108

    Article  Google Scholar 

  36. Elkins PA, Ho YS, Smith WW, Janson CA, D’Alessio KJ, McQueney MS, Cummings MD, Romanic AM (2002) Acta Crystallogr D Biol Crystallogr 58:1182–1192

    Article  Google Scholar 

  37. Pinsuwan S, Alvarez-Nunez FA, Tabibi SE, Yalkowsky SH (1999) J Pharm Sci 88:535–537

    Article  CAS  Google Scholar 

  38. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  39. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  40. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  41. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  42. Sousa SF, Carvalho ES, Ferreira DM, Tavares IS, Fernandes PA, Ramos MJ, Gomes J (2009) J Comput Chem 30:2752–2763

    Article  CAS  Google Scholar 

  43. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  44. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  45. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  46. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  47. Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

    Google Scholar 

  49. Wiberg KB (1968) Tetrahedron 24:1083–1096

    Article  CAS  Google Scholar 

  50. Tamames B, Sousa SF, Tamames J, Fernandes PA, Ramos MJ (2007) Proteins: Struct Funct Bioinform 69:466–475

    Article  CAS  Google Scholar 

  51. Matos S, Beraldo H (1995) J Braz Chem Soc 6:405–411

    Google Scholar 

  52. Linder DP, Rodgers KR (2004) J Phys Chem B 108:13839–13849

    Article  CAS  Google Scholar 

  53. Dos Santos HF, Nascimento CS, Belletato P, De Almeida WB (2003) J Mol Struct (Theochem) 626:305–319

    Article  CAS  Google Scholar 

  54. Dos Santos HF, De Almeida WB, Zerner MC (1998) J Pharm Sci 87:190–195

    Article  CAS  Google Scholar 

  55. Addison AW, Rao TN, Reedijk J, Vanrijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 4:1349–1356

    Article  Google Scholar 

  56. Sousa SF, Lopes AB, Fernandes PA, Ramos MJ (2009) Dalton Trans 48:7946–7956

    Article  Google Scholar 

  57. Tochowicz A, Maskos K, Huber R, Oltenfreiter R, Dive V, Yiotakis A, Zanda M, Bode W, Goettig P (2007) J Mol Biol 371:989–1006

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico (CNPq—479682/2008-9) by the provision of the research concessions and for the financial support; and to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—CEX—APQ-00498-08) by the fomentation. B. L. Marcial also thanks to the CAPES for graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio F. Dos Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2010_881_MOESM1_ESM.doc

Optimized geometries of all complexes [Zn(LH n )(H2O)2]2−x (n = 0, 1, 2 and x = −2, −1, 0) are represented in Figs. S1–S2 for CMT-3 and Figs. S3–S4 for CMT-1. (DOC 2974 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcial, B.L., Costa, L.A.S., De Almeida, W.B. et al. Interaction of chemically modified tetracyclines with catalytic Zn(II) ion in matrix metalloproteinase: evidence for metal coordination sites. Theor Chem Acc 128, 377–388 (2011). https://doi.org/10.1007/s00214-010-0881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0881-9

Keywords

Navigation