Skip to main content
Log in

Theoretical study of the competitive decomposition and isomerization of 1-hexyl radical

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The ground-state potential energy surface of the 1-hexyl system, including the main decomposition and isomerization processes, has been calculated with the MPW1K, BB1K, MPWB1K, MPW1B95, BMK, M05-2X and CBS-QB3 methods. On the basis of these data, thermal rate coefficients of different reaction channels and branching ratios were then calculated using the master equation formulation at 250–2,500 K. The results clearly point out that the 1,5 H atom transfer reaction of 1-hexyl radical with exothermicity proceeds through the lowest reaction barrier, whereas the decomposition processes are thermodynamically unfavorable with large endothermicity. The temperature effect is important on the relative importance of different reactions in the 1-hexyl system. In the low-temperature range of 250–900 K, isomerization reactions, especially 1,5 H atom transfer reaction of 1-hexyl radical, are dominating and responsible for over 82.17% of all the reactions, due to their smaller reaction barriers than those of the decomposition reactions. Furthermore, an equilibrium process involving the isomeric forms of the hexyl radicals appearing at relative low temperature was validated theoretically. However, isomerization and decomposition processes are kinetically competitive and simultaneously important under normal pyrolysis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Reaction enthalpies Δr H°(298) were calculated as the sum of heat of formation of the products minus those of reactants. The standard enthalpies of formation are from NIST Standard Reference Database (http://webbook.nist.gov) and [44], while the standard enthalpies of formation of 2-hexyl and 3-hexyl radical were derived by assuming the bond dissociation energy of secondary and third C-H bond of n-hexane to be 98.09 kcal/mol.

References

  1. Albright LF, Crynes BL, Corcoran WH (eds) (1983) Pyrolysis: theory and industrial practice. Academic Press, New York

    Google Scholar 

  2. Kossiakoff A, Rice FO (1943) J Am Chem Soc 65:590

    Article  CAS  Google Scholar 

  3. Watkins KW (1973) J Phys Chem 77:2938

    Article  CAS  Google Scholar 

  4. Dóbé S, Bérces T, Réti F, Márta F (1987) Int J Chem Kinet 19:895

    Article  Google Scholar 

  5. Imbert FE, Marshall RM (1987) Int J Chem Kinet 19:81

    Article  CAS  Google Scholar 

  6. Yamauchi N, Miyoshi A, Kosaka K, Mitsuo K, Matsui H (1999) J Phys Chem A 103:2723

    Article  CAS  Google Scholar 

  7. Tsang W, Walker JA, Manion JA (2007) Proc Combust Inst 31:141

    Article  Google Scholar 

  8. Quinn CP (1963) J Chem Soc Faraday Trans 59:2543

    Article  CAS  Google Scholar 

  9. Lin MC, Back MH (1966) Can J Chem 59:2369

    Article  Google Scholar 

  10. Chen YH, Rauk A, Tschuikow-Roux E (1990) J Phys Chem 94:6250

    Article  CAS  Google Scholar 

  11. Pacansky J, Waltman RJ, Barnes L (1993) J Phys Chem 97:10694

    Article  CAS  Google Scholar 

  12. Jitariu LC, Wang H, Hillier IH, Pilling MJ (2001) Phys Chem Chem Phys 3:2459

    Article  CAS  Google Scholar 

  13. Jitariu LC, Jones LD, Robertson SH, Pilling MJ, Hillier IH (2003) J Phys Chem A 107:8607

    Article  CAS  Google Scholar 

  14. Viskolcz B, Lendvay G, Seres L (1997) J Phys Chem A 101:7119

    Article  CAS  Google Scholar 

  15. Viskolcz B, Lendvay G, Kortvelyesi T, Seres L (1996) J Am Chem Soc 118:3006

    Article  CAS  Google Scholar 

  16. Bankiewicz B, Huynh LK, Ratkiewicz A, Truong TN (2009) J Phys Chem A 113:1564

    Article  CAS  Google Scholar 

  17. Hayes CJ, Burgess DR Jr (2009) J Phys Chem A 113:2473

    Article  CAS  Google Scholar 

  18. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  19. Frisch MJ, Pople JA et al (2004) Gaussian 03, Revision E.01. Gaussian Inc., Wallingford, CT

  20. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  22. Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656

    Article  CAS  Google Scholar 

  23. Albu TV, Swaminathan S (2006) J Phys Chem A 110:7663

    Article  CAS  Google Scholar 

  24. Fast PL, Corchado J, Sanchez ML, Truhlar DG (1999) J Phys Chem A 103:3139

    Article  CAS  Google Scholar 

  25. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  26. Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264

    Article  CAS  Google Scholar 

  27. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  Google Scholar 

  28. Boese AD, Martin JML (2004) J Chem Phys 121:3405

    Article  CAS  Google Scholar 

  29. Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43

    Article  CAS  Google Scholar 

  30. Zheng JJ, Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:569

    Article  CAS  Google Scholar 

  31. Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384

    Article  CAS  Google Scholar 

  32. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  33. Vandeputte AG, Sabbe MK, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB (2007) J Phys Chem A 111:11771

    Article  CAS  Google Scholar 

  34. Coote ML (2004) J Phys Chem A 108:3865

    Article  CAS  Google Scholar 

  35. Sabbe MK, Vandeputte AG, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB (2007) J Phys Chem A 111:8416

    Article  CAS  Google Scholar 

  36. Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M (2003) J Phys Chem A 107:9147

    Article  CAS  Google Scholar 

  37. Iuga C, Galano A, Vivier-Bunge A (2008) ChemPhysChem 9:1453

    Article  CAS  Google Scholar 

  38. Gilbert RG, Smith SC (eds) (1990) Theory of unimolecular and recombination reactions. Blackwell Scientific Publications, Oxford

    Google Scholar 

  39. Miller JA, Klippenstein SJ (2006) J Phys Chem A 110:10528

    Article  CAS  Google Scholar 

  40. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  41. Zhang S, Troung TN (2001) VKLab. Version 1.0, University of Utah

  42. Hemelsoet K, Moran D, Van Speybroeck V, Waroquier M, Radom L (2006) J Phys Chem A 110:8942

    Article  CAS  Google Scholar 

  43. Hammond GS (1955) J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

  44. Lide DR (2006) CRC Handbook of chemistry and physics, 87th edn. CRC Press, Boca Raton, FL

  45. Zheng XB, Blowers P (2007) Theor Chem Acc 117:207

    Article  CAS  Google Scholar 

  46. Gomez-Balderas R, Coote ML, Henry DJ, Radom L (2004) J Phys Chem A 108:2874

    Article  CAS  Google Scholar 

  47. Ross PL, Johnston MV (1995) J Phys Chem 99:16507

    Article  CAS  Google Scholar 

  48. Tardy DC, Rabinovitch BS, Larson CW (1966) J Chem Phys 45:1163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China under Grant No. 20590361 and the National Outstanding Young Scientists Foundation of China under Grant No. 20625620. This work is also supported by Synfuels China Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material. Supporting Information Available: optimized geometries at the MPWB1K/6-31 + G(d,p) level of theory and classical potential energy of all reactions as function of the intrinsic reaction coordinate at the MPWB1K/6-31 + G(d,p) level of theory. This material is available in Supporting Information.

Supplementary material 1 (DOC 136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Cao, D.B., Liu, G. et al. Theoretical study of the competitive decomposition and isomerization of 1-hexyl radical. Theor Chem Acc 126, 87–98 (2010). https://doi.org/10.1007/s00214-009-0685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0685-y

Keywords

Navigation