Skip to main content
Log in

Theoretical study on the mechanism of C2Cl3 + NO2 reaction

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The radical-molecule reaction of C2Cl3 with NO2 is explored at the B3LYP/6-311G(d,p) and CCSD(T)/6-311+G(d,p) (single-point) levels. On the singlet potential energy surface (PES), the association between C2Cl3 and NO2 is found to be carbon-to-nitrogen attack forming the adduct C2Cl3NO2 (1) without any encounter barrier, followed by isomerization to C2Cl3ONO (2). Starting from 2, the most feasible pathway is the N–O1 bond cleavage which lead to P 1 (C2Cl3O + NO). Much less competitively, 2 transforms to the three-membered ring isomer c-OCCl2C–ClNO (4 a) which can easily interconvert to c-OCCl2C–ClNO 4 b. Then 4 (4 a, 4 b) takes direct C1–C2 and C2–O1 bonds cleavage to give P 2 (COCl2 + ClCNO). The lesser competitive channel is the 4 a isomerizes to the four-membered ring intermediate O-c-CNClOCCl2 (5) followed by dissociation to P3 (CO + ClNOCCl2). The concerted 1,2-Cl shift along with C1–O1 bond rupture of 4 b to form ONC(O)CCl3 (6) followed by dissociation to P 4 (ClNO + OCCCl2) is even much less feasible. Moreover, some of P 3 and P 4 can further dissociate to P 5 (ClNO + CO + CCl2). Compared with the singlet pathways, the triplet pathways may have less contribution to the title reaction. Our results are in marked difference from previous theoretical studies which showed that two initial adducts C2Cl3–NO2 and C2Cl3–ONO are obtained. Moreover, in the present paper we focus our main attentions on the cyclic isomers in view of only the chain-like isomers are considered by previous studies. The present study may be helpful for understanding the halogenated vinyl chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valeiras H, Gupta AK, Senkan SM (1984) Combust Sci Technol 36:123. doi:10.1080/00102208408923729

    Article  CAS  Google Scholar 

  2. Senkan SM, Robinson JM, Gupta AK (1983) Combust Flame 49:305. doi:10.1016/0010-2180(83)90173-6

    Article  CAS  Google Scholar 

  3. Chang WD, Senkan SM (1989) Environ Sci Technol 23:442. doi:10.1021/es00181a009

    Article  CAS  Google Scholar 

  4. Taylor PH, Tirey DA, Dellinger B (1996) Combust Flame 104:260. doi:10.1016/0010-2180(95)00117-4

    Article  CAS  Google Scholar 

  5. Taylor PH, Tirey DA, Rubey WA, Dellinger B (1994) Combust Sci Technol 101:75. doi:10.1080/00102209408951867

    Article  CAS  Google Scholar 

  6. Russell JJ, Seetula JA, Gutman D, Senkan SM (1989) J Phys Chem 93:1935

    Google Scholar 

  7. Xiang TC, Liu KH, Zhao SL, Su HM, Kong FN, Wang BS (2007) J Phys Chem A 111:9606. doi:10.1021/jp074058c

    Article  CAS  Google Scholar 

  8. Wang H, Li JC, Song XL, Li YZ, Hou H, Wang BS, Su HM, Kong FN (2006) J Phys Chem A 110:10336. doi:10.1021/jp0633345

    Article  CAS  Google Scholar 

  9. Kostina KS, Bryukov MG, Shestov AA, Knyazev VD (2003) J Phys Chem A 107:1776. doi:10.1021/jp027162x

    Article  CAS  Google Scholar 

  10. Xiang TC, Liu KH, Su HM (2007) Chin. J Chem Phys 20:407

    CAS  Google Scholar 

  11. Liu KH, Xiang TC, Wu WQ, Zhao SL, Su HM (2008) J Phys Chem A 112:10807. doi:10.1021/jp8031034

    Article  CAS  Google Scholar 

  12. Mikhail GB, Sofya AK, Vadim DK (2003) J Phys Chem A 107:6574. doi:10.1021/jp034205g

    Article  Google Scholar 

  13. Baren RE, Erickson MA, Hershberger JF (2002) Int J Chem Kinet 34:12. doi:10.1002/kin.10013

    Article  CAS  Google Scholar 

  14. Rim KT, Hershberger JF (1998) J Phys Chem A 102:4592. doi:10.1021/jp981362k

    Article  CAS  Google Scholar 

  15. Myerson AL (1975) In: 15th international symposium on combustion. The Combustion Institute, Pittsburgh, PA, p 1085

  16. Song YH, Blair DW, Siminski VJ, Bartok W (1981) In: 18th international symposium on combustion. The Combustion Institute, Pittsburgh, PA, p 53

  17. Chen SL, McCarthy JM, Clark WD, Heap MP, Seeker WR, Pershing DW (1986) In: 21st international symposium on combustion. The Combustion Institute, Pittsburgh, PA, p 1159

  18. Zhang JX, Li ZS, Liu JY, Sun CC (2006) J Comput Chem 27:894. doi:10.1002/jcc.20397

    Article  CAS  Google Scholar 

  19. Zhang JX, Li ZS, Liu JY, Sun CC (2007) Theory Chem Acc 117:579. doi:10.1007/s00214-006-0244-8

    Article  CAS  Google Scholar 

  20. Eskola AJ, Geppert WD, Rissanen MP, Timonent RS, Halonen L (2005) J Phys Chem A 109:5376. doi:10.1021/jp050441a

    Article  CAS  Google Scholar 

  21. Zhang JX, Liu JY, Li ZS, Sun CC (2005) J Comput Chem 26:807. doi:10.1002/jcc.20217

    Article  Google Scholar 

  22. Yamada F, Slagle IR, Gutman D (1981) Chem Phys Lett 83:409. doi:10.1016/0009-2614(81)85490-5

    Article  CAS  Google Scholar 

  23. Wollenhaupt M, Crowley JN (2000) J Phys Chem A 104:6429. doi:10.1021/jp0005726

    Article  CAS  Google Scholar 

  24. Zhang JX, Li ZS, Liu JY, Sun CC (2006) J Comput Chem 27:661. doi:10.1002/jcc.20380

    Article  Google Scholar 

  25. Seidler V, Temps F, Wagner HG, Wolf M (1989) J Phys Chem 93:1070. doi:10.1021/j100340a011

    Article  CAS  Google Scholar 

  26. Darwin D, Moore CB (1995) J Phys Chem 99:13467. doi:10.1021/j100036a022

    Article  CAS  Google Scholar 

  27. Liu JJ, Ding YH, Yu GT, Feng JK, Sun CC (2002) J Comput Chem 23:1031. doi:10.1002/jcc.10075

    Article  CAS  Google Scholar 

  28. Wagal SS, Carrington T, Filseth SV, Sadowski CM (1982) Chem Phys 69:61. doi:10.1016/0301-0104(82)88132-9

    Article  CAS  Google Scholar 

  29. Rim KT, Hershberger JF (1998) J Phys Chem A 102:4592. doi:10.1021/jp981362k

    Article  CAS  Google Scholar 

  30. Yu GT, Ding YH, Li ZS, Huang XR, Sun CC (2001) J Phys Chem A 105:3388. doi:10.1021/jp003717h

    Article  Google Scholar 

  31. Yu GT, Ding YH, Li ZS, Huang XR, Sun CC (2001) J Phys Chem A 105:9598. doi:10.1021/jp012481u

    Article  Google Scholar 

  32. Van Hoeymissen J, De Boelpaep I, Uten W, Peeters J (1994) J Phys Chem 98:3725. doi:10.1021/j100065a030

    Article  Google Scholar 

  33. Yu GT, Ding YH, Liu JY, Li ZS, Huang XR, Sun CC (2001) J Comput Chem 22:1907. doi:10.1002/jcc.1141

    Article  Google Scholar 

  34. Cookson JL, Hancock G, Mckendrick KG, Bunsenges Ber (1985) Phys Chem 89:335. doi:10.1021/j100248a031

    Article  CAS  Google Scholar 

  35. Zhang JX, Liu JY, Li ZS, Sun CC (2004) J Comput Chem 25:1888. doi:10.1002/jcc.20121

    Article  CAS  Google Scholar 

  36. Baren RE, Erickson MA, Hershberger JF (2002) Int J Chem Kinet 34:12. doi:10.1002/kin.10013

    Article  CAS  Google Scholar 

  37. Zhang JX, Liu JY, Li ZS, Sun CC (2004) J Comput Chem 25:1184. doi:10.1002/jcc.20043

    Article  CAS  Google Scholar 

  38. Geppert WD, Eskola AJ, Timonen RS, Halonen L (2004) J Phys Chem A 108:4232. doi:10.1021/jp0370167

    Article  CAS  Google Scholar 

  39. Du BN, Zhang WC (2006) J Mol Struct THEMCHEM 801:39

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB et al (1998) Gaussian 98, Revision A.6. Gaussian, Inc, Pittsburgh, PA

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 20773048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-ri Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Hl., Huang, Xr. et al. Theoretical study on the mechanism of C2Cl3 + NO2 reaction. Theor Chem Acc 123, 431–441 (2009). https://doi.org/10.1007/s00214-009-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0549-5

Keywords

Navigation