Skip to main content
Log in

Topological models of magnetic field induced current density field in small molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Three-dimensional models of the quantum mechanical current density induced in the electrons of LiH, BeH2, and CO2 molecules by a magnetic field applied perpendicularly to the bond axis have been constructed at the Hartree-Fock level of accuracy. The topological features of the current density vector field are described via a stagnation graph that contains the isolated points and the lines at which the current vanishes, and by planar and spatial streamline plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Bohm and Peat [18] emphasize the importance of the intrinsic wave-particle dichotomy characterizing the Hamilton-Jacobi theory as a classical root of quantum mechanics. According to these authors, Hamilton had already developed the optico-mechanical similarity to such an extent that he might have put forward a wave mechanics analogous to wave optics. Therefore they speculate that, allowing for the Hamilton-Jacobi formulation in the regime of short wavelength, a wave mechanics might be derived from the classical mechanics of the nineteeth century, just as a wave optics is derived from geometric optics.

  2. The topological index \(\iota\) counts the number of times that the current density vector J B rotates completely while one walks counterclockwise around a circle of radius ε, so small that J B has no zeroes inside except the SP at its center. The topological index \(\iota\) of a saddle (vortex) line is −1 (+1). Both SPs have (r, s) = (2, 0).

  3. The LINUX and WINDOWS versions of the graphic code used to obtain three-dimensional representations of the stagnation graph and current density vector field of a series of molecules can be downloaded at https://theochem.chimfar.unimo.it/VEDO3/.

References

  1. Madelung E (1926) Z Phys 40:322

    Google Scholar 

  2. Schrödinger E (1926) Ann Phys (Leipzig) 81:109

    Google Scholar 

  3. de Broglie L (1926) C R Acad Sci (Paris) 183:447

    Google Scholar 

  4. de Broglie L (1927) C R Acad Sci (Paris) 184:273

    Google Scholar 

  5. Landau LD, Lifshitz EM (1981) Quantum mechanics. Pergamon Press, Oxford

    Google Scholar 

  6. Hamilton W (1833) On a general method of expressing the paths of light, and of the planets, by the coefficients of a characteristic function. Dublin University Rev:795–826

  7. Hamilton W (1834) On the application to dynamics of a general mathematical method previously applied to optics. British Association Report, London, pp 513–518

  8. Landau L (1941) J Phys USSR 5:71

    CAS  Google Scholar 

  9. London F (1945) Rev Mod Phys 17:310

    Article  Google Scholar 

  10. Bohm D (1952) Phys Rev 85:166

    Article  CAS  Google Scholar 

  11. Bohm D (1952) Phys Rev 85:180

    Article  CAS  Google Scholar 

  12. Halpern O (1952) Phys Rev 87:389

    Article  CAS  Google Scholar 

  13. Bohm D (1952) Phys Rev 87:389

    Article  CAS  Google Scholar 

  14. Epstein ST (1953) Phys Rev 89:319

    Article  Google Scholar 

  15. Bohm D (1953) Phys Rev 89:319

    Article  Google Scholar 

  16. Bohm D (1953) Phys Rev 89:458

    Article  Google Scholar 

  17. Bohm D, Hiley BJ, Kaloyerou PN (1987) Phys Rep 144:321

    Article  CAS  Google Scholar 

  18. Bohm D, Peat FD (2000) Science, order, and creativity, 2nd edn. Routledge, London

  19. Bialynicki-Birula I, Bialynicka-Birula Z (1971) Phys Rev D 3:2410

    Article  Google Scholar 

  20. Hirschfelder JO, Christoph AC (1974) J Chem Phys 61:5435

    Article  CAS  Google Scholar 

  21. Hirschfelder JO, Goebel CJ, Bruch LW (1974) J Chem Phys 61:5456

    Article  CAS  Google Scholar 

  22. Hirschfelder JO, Tang KT (1976) J Chem Phys 64:760

    Article  CAS  Google Scholar 

  23. Hirschfelder JO, Tang KT (1976) J Chem Phys 65:470

    Article  CAS  Google Scholar 

  24. Lopreore CL, Wyatt RE (1999) Phys Rev Lett 82:5190

    Article  CAS  Google Scholar 

  25. Derrickson SW, Bittner ER, Kendrick BK (2005) J Chem Phys 123:054107

    Article  Google Scholar 

  26. Deckert D-A, Dürr D, Pickl P (2007) J Phys Chem A 111:10325

    Article  CAS  Google Scholar 

  27. Dey BK, Askar A, Rabitz H (1998) Chem Phys Lett 297:247

    Article  CAS  Google Scholar 

  28. Dey BK, Rabitz H, Askar A (2000) Phys Rev A 61:043412

    Article  Google Scholar 

  29. Hu XG, Rabitz H, Askar A (2000) Phys Rev D 61:5967

    CAS  Google Scholar 

  30. Mayor FS, Rabitz H, Askar A (1999) J Chem Phys 111:2423

    Article  CAS  Google Scholar 

  31. McLafferty F (2002) J Chem Phys 117:10474

    Article  CAS  Google Scholar 

  32. Stevens RM, Nipscomb W (1964) J Chem Phys 40:2238

    Article  CAS  Google Scholar 

  33. Stevens RM, Lipscomb WN (1964) J Chem Phys 41:3710

    Article  CAS  Google Scholar 

  34. Hegstrom RA, Lipscomb WN (1966) J Chem Phys 45:2378

    Article  CAS  Google Scholar 

  35. Laws EA, Stevens RM, Lipscomb WN (1971) J Chem Phys. 54:4269

    Article  CAS  Google Scholar 

  36. Lazzeretti P, Zanasi R (1983) J Am Chem Soc 105:12

    Article  CAS  Google Scholar 

  37. Lazzeretti P, Zanasi R (1982) J Chem Phys 77:3129

    Article  CAS  Google Scholar 

  38. Lazzeretti P, Rossi E, Zanasi R (1984) Int J Quantum Chem XXV:929

    Article  Google Scholar 

  39. Lazzeretti P, Rossi E, Zanasi R (1984) Int J Quantum Chem XXV:1123

    Article  Google Scholar 

  40. Keith TA, Bader RFW (1993) Chem Phys Lett 210:223

    Article  CAS  Google Scholar 

  41. Keith TA, Bader RFW (1993) J Chem Phys 99:3669

    Article  CAS  Google Scholar 

  42. Bader RFW, Keith TA (1993) J Chem Phys 99:3683

    Article  CAS  Google Scholar 

  43. Keith TA, Bader RFW (1996) Can J Chem 74:185

    Article  CAS  Google Scholar 

  44. Bader RFW, Keith TA (1996) Int J Quantum Chem 60:373

    Article  CAS  Google Scholar 

  45. Pelloni S, Faglioni F, Zanasi R, Lazzeretti P (2006) Phys Rev A 74:012506

    Article  Google Scholar 

  46. Pelloni S, Lazzeretti P (2007) Theor Chem Acc 117:903

    Article  CAS  Google Scholar 

  47. Pelloni S, Lazzeretti P, Zanasi R (2007) J Phys Chem A 111:3110

    Article  CAS  Google Scholar 

  48. Pelloni S, Lazzeretti P, Zanasi R (2007) J Phys Chem A 111:8163

    Article  CAS  Google Scholar 

  49. Pelloni S, Lazzeretti P (2007) Theor Chem Acc 118:89

    Article  CAS  Google Scholar 

  50. Pelloni S, Lazzeretti P (2008) J Phys Chem A 112:5175

    Article  CAS  Google Scholar 

  51. Pelloni S, Lazzeretti P (2008) J Chem Phys 128:194305

    Article  Google Scholar 

  52. Kutzelnigg W, Fleischer U, Schindler M (1990) The IGLO method:Ab initio calculation and interpretation of NMR chemical shifts and magnetic susceptibilities. In: NMR, basic principles and progress, vol 23, Springer, Berlin, pp 165–262

  53. Kutzelnigg W, van Wüllen C, Fleischer U, Franke R, van Mourik T (1993) In: Tossell JA (ed) Nuclear magnetic shielding and molecular structure, vol 386 of NATO ASI Series C. Kluwer Academic Publishers, Dordrecht, pp 141–161

  54. Fleischer U (1992) Anwendungen der IGLO Methode und ihre Interpretation. Ruhr-Universität Bochum, Ph.D Thesis, in German

  55. Havenith RWA, Fowler PW, Steiner E (2003) Chem Phys Lett 371:276

    Article  CAS  Google Scholar 

  56. Fowler PW, Baker J, Lillington M (2007) Theor Chem Acc 118:123

    Article  CAS  Google Scholar 

  57. Ligabue A, Pincelli U, Lazzeretti P, Zanasi R (1999) J Am Chem Soc 121:5513

    Article  CAS  Google Scholar 

  58. Lazzeretti P (2000) In: Emsley JW, Feeney J, Sutcliffe LH (eds) Progress in nuclear magnetic resonance spectroscopy, vol 36. Elsevier, Amsterdam, pp 1–88

  59. Kutzelnigg W (1980) Isr J Chem 19:193

    CAS  Google Scholar 

  60. Schindler M, Kutzelnigg W (1982) J Chem Phys 76:1919

    Article  CAS  Google Scholar 

  61. Fleischer U, Kutzelnigg W, Lazzeretti P, Mühlenkamp V (1994) Am Chem Soc 116:5298

    Article  CAS  Google Scholar 

  62. Lin Y-C, Jusélius J, Sundholm D, Gauss J (2005) J Chem Phys 122:214308

    Article  Google Scholar 

  63. Johansson MP, Jusélius J (2005) Lett Org Chem 2:469

    Article  CAS  Google Scholar 

  64. Johansson MP, Jusélius J, Sundholm D (2005) Angew Chem Int Ed Engl 44:1843

    Article  CAS  Google Scholar 

  65. Bast R, Jusélius J, Saue T (2008) Chem Phys published on line, doi:10.1016/j.chemphys.2008.10.040

  66. Frisch MJ, Trucks GW et al (2003) Gaussian 2003, Revision B.05. Gaussian Inc, Pittsburgh

    Google Scholar 

  67. Geertsen J (1989) J Chem Phys 90:4892

    Article  Google Scholar 

  68. Geertsen J (1991) Chem Phys Lett 179:479

    Article  CAS  Google Scholar 

  69. Geertsen J (1992) Chem Phys Lett 188:326

    Article  CAS  Google Scholar 

  70. Lazzeretti P, Malagoli M, Zanasi R (1994) Chem Phys Lett 220:299

    Article  CAS  Google Scholar 

  71. Coriani S, Lazzeretti P, Malagoli M, Zanasi R (1994) Theor Chim Acta 89:181

    Article  CAS  Google Scholar 

  72. Zanasi R (1996) J Chem Phys 105:1460

    Article  CAS  Google Scholar 

  73. van Duijneveldt FB (1971) Gaussian basis sets for the atoms H–Ne for use in molecular calculations. Research report RJ 945, IBM

  74. Lazzeretti P, Malagoli M, Zanasi R (1991) Technical report on project sistemi informatici e calcolo parallelo. Research report 1/67, CNR

  75. Gomes JANF (1983) Phys Rev A 28:559

    Article  CAS  Google Scholar 

  76. Gomes JANF (1983) J Chem Phys 78:4585

    Article  CAS  Google Scholar 

  77. Gomes JANF (1983) J Mol Struct (Theochem) 93:111

    Article  Google Scholar 

  78. Gomes JANF, Mallion RB (2001) Chem Rev 101:1349

    Article  CAS  Google Scholar 

  79. Milnor JW (1997) Topology from the differentiable viewpoint. University of Virginia Press, Charlottesville

    Google Scholar 

  80. Guillemin V, Pollack A (1974) Differential topology. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  81. Hirschfelder JO (1977) J Chem Phys 67:5477

    Article  CAS  Google Scholar 

  82. Reyn JW (1964) Z Angew Math Physik 15:540

    Article  Google Scholar 

  83. Khriplovich IB (1991) Parity nonconservation in atomic phenomena. Gordon & Breach, Oxford

    Google Scholar 

  84. Faglioni F, Ligabue A, Pelloni S, Soncini A, Lazzeretti P (2004) Chem Phys 304:289

    Article  CAS  Google Scholar 

  85. Pelloni S, Lazzeretti P (in preparation)

  86. Gomes JANF (1983) J Chem Phys 78:3133

    Article  CAS  Google Scholar 

  87. Zanasi R, Lazzeretti P, Malagoli M, Piccinini F (1995) J Chem Phys 102:7150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support to the present research from the Italian MURST (Ministero dell’Università e della Ricerca Scientifica e Tecnologica), via FAR and PRIN funds, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lazzeretti.

Additional information

Dedicated to the memory of Professor Oriano Salvetti and published as part of the Salvetti Memorial Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (604 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelloni, S., Lazzeretti, P. & Zanasi, R. Topological models of magnetic field induced current density field in small molecules. Theor Chem Acc 123, 353–364 (2009). https://doi.org/10.1007/s00214-009-0530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0530-3

Keywords

Navigation