Skip to main content
Log in

An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity SN2 reactions

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

A set of four reactions, XCH3+X (X=F, Cl, Br) and ClSiH3+Cl, is investigated by means of the joint use of the electron localization function (ELF) and catastrophe theory (CT) analysis in order to obtain new insights into the bond breaking/forming processes for identity SN2 gas-phase reactions. Using DFT calculations at the OLYP/6-311++G(d,p) level, the effect of nucleophile (F, Cl, and Br anions) and the role of reacting centers (C or Si) on the reaction mechanisms are investigated. The charge-shift character of carbon–halogen bonds is studied by determination of the weights of the Lewis resonance structures. In all SN2 reactions at the carbon atom, there is a progressive reduction on the covalent character of the C–X bond from the reactant complex (0.41, 0.57, 0.58 for F, Cl, and Br, respectively) until the bond-breaking process, occurring before the transition structure is reached. On the other hand, the Si–Cl bond maintains its degree of covalent character (0.51) from the isolated fragments to the formation of a stable transition complex, presenting two silicon–chlorine charge-shifted bonds. The analysis of the ELF topology along the reaction path reveals that all reactions proceed via the same turning points of fold-type but the order is inverted for reactions taking place at C or Si atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader RFW (1990). Atoms in molecules. A quantum theory. Oxford University Press, Oxford

    Google Scholar 

  2. Bader RFW (1998). J Phys Chem A 102: 7314

    Article  CAS  Google Scholar 

  3. Tal Y, Bader RFW, Nguyendang TT, Ojha M and Anderson SG (1981). J Chem Phys 74: 5162

    Article  CAS  Google Scholar 

  4. Thom R (1975). Structural stability and morphogenesis: an outline of a general theory of models. Benjamin, Reading

    Google Scholar 

  5. Krokidis X, Noury S and Silvi B (1997). J Phys Chem A 101: 7277

    Article  CAS  Google Scholar 

  6. Becke AD and Edgecombe KE (1990). J Chem Phys 92: 5397

    Article  CAS  Google Scholar 

  7. Krokidis X, Goncalves V and Savin A (1998). J Phys Chem A 102: 5065

    Article  CAS  Google Scholar 

  8. Michelini MD, Sicilia E, Russo N, Alikhani ME and Silvi B (2003). J Phys Chem A 107: 4862

    Article  CAS  Google Scholar 

  9. Michelini MD, Russo N, Alikhani ME and Silvi B (2004). J Comput Chem 25: 1647

    Article  CAS  Google Scholar 

  10. Michelini MD, Russo N, Alikhani ME and Silvi B (2005). J Comput Chem 26: 1284

    Article  CAS  Google Scholar 

  11. Polo V and Andres J (2005). J Comput Chem 26: 1427

    Article  CAS  Google Scholar 

  12. Polo V, Andres J, Castillo R, Berski S and Silvi B (2004). Chem-Eur J 10: 5165

    Article  CAS  Google Scholar 

  13. Santos JC, Polo V and Andres J (2005). Chem Phys Lett 406: 393

    Article  CAS  Google Scholar 

  14. Santos JC, Andres J, Aizman A, Fuentealba P and Polo V (2005). J Phys Chem A 109: 3687

    Article  CAS  Google Scholar 

  15. Polo V, Domingo LR and Andres J (2006). J Org Chem 71: 754

    Article  CAS  Google Scholar 

  16. Polo V and Andres J (2007). J Chem Theory Comput 3: 816

    Article  CAS  Google Scholar 

  17. DePuy CH (2000). Int J Mass spectrom 200: 79

    Article  CAS  Google Scholar 

  18. Gronert S (2001). Chem Rev 101: 329

    Article  CAS  Google Scholar 

  19. Tucker SC and Truhlar DG (1990). J Am Chem Soc 112: 3338

    Article  CAS  Google Scholar 

  20. Shaik S, Schlegel HB and Wolfe S (1992). Theoretical aspects of physical organic chemistry. The SN2 mechanism. Wiley, New York

    Google Scholar 

  21. Hu WP and Truhlar DG (1994). J Am Chem Soc 116: 7797

    Article  CAS  Google Scholar 

  22. Harder S, Streitwieser A, Petty JT and Schleyer PV (1995). J Am Chem Soc 117: 3253

    Article  CAS  Google Scholar 

  23. Streitwieser A, Choy GSC and AbuHasanayn F (1997). J Am Chem Soc 119: 5013

    Article  CAS  Google Scholar 

  24. Cossi M, Adamo C and Barone V (1998). Chem Phys Lett 297: 1

    Article  CAS  Google Scholar 

  25. Su T, Wang HB and Hase WL (1998). J Phys Chem A 102: 9819

    Article  CAS  Google Scholar 

  26. Schmatz S and Clary DC (1999). J Chem Phys 110: 9483

    Article  CAS  Google Scholar 

  27. Borisov YA, Arcia EE, Mielke SL, Garrett BC and Dunning TH (2001). J Phys Chem A 105: 7724

    Article  CAS  Google Scholar 

  28. Pagliai M, Raugei S, Cardini G and Schettino V (2001). Phys Chem Chem Phys 3: 2559

    Article  CAS  Google Scholar 

  29. Laerdahl JK and Uggerud E (2002). Int J Mass Spectrom 214: 277

    Article  CAS  Google Scholar 

  30. Kormos BL and Cramer CJ (2003). J Org Chem 68: 6375

    Article  CAS  Google Scholar 

  31. Mo SJ, Vreven T, Mennucci B, Morokuma K and Tomasi J (2004). Theor Chem Acc 111: 154

    CAS  Google Scholar 

  32. Vayner G, Houk KN, Jorgensen WL and Brauman JI (2004). J Am Chem Soc 126: 9054

    Article  CAS  Google Scholar 

  33. Adamovic I and Gordon MS (2005). J Phys Chem A 109: 1629

    Article  CAS  Google Scholar 

  34. Almerindo GI and Pliego JR (2005). Org Lett 7: 1821

    Article  CAS  Google Scholar 

  35. Bento AP, Sola M and Bickelhaupt FM (2005). J Comput Chem 26: 1497

    Article  CAS  Google Scholar 

  36. Halls MD and Raghavachari K (2005). Nano Lett 5: 1861

    Article  CAS  Google Scholar 

  37. Hasanayn F, Streitwieser A and Al-Rifai R (2005). J Am Chem Soc 127: 2249

    Article  CAS  Google Scholar 

  38. Pliego JR (2005). J Mol Catal A Chem 239: 228

    Article  CAS  Google Scholar 

  39. Tondo DW and Pliego JR (2005). J Phys Chem A 109: 507

    Article  CAS  Google Scholar 

  40. Fernandez-Ramos A, Miller JA, Klippenstein SJ and Truhlar DG (2006). Chem Rev 106: 4518

    Article  CAS  Google Scholar 

  41. Pliego JR (2006). Org Biomol Chem 4: 1667

    Article  CAS  Google Scholar 

  42. Uggerud E (2006). Chem-Eur J 12: 1127

    Article  CAS  Google Scholar 

  43. Pliego JR and Pilo-Veloso D (2007). J Phys Chem B 111: 1752

    Article  CAS  Google Scholar 

  44. Swart M, Sola M and Bickelhaupt FM (2007). J Comput Chem 28: 1551

    Article  CAS  Google Scholar 

  45. Zheng JJ, Zhao Y and Truhlar DG (2007). J Chem Theory Comput 3: 569

    Article  CAS  Google Scholar 

  46. Gonzales JM, Pak C, Cox RS, Allen WD, Schaefer HF, Csaszar AG and Tarczay G (2003). Chem-Eur J 9: 2173

    Article  CAS  Google Scholar 

  47. Glukhovtsev MN, Pross A, Schlegel HB, Bach RD and Radom L (1996). J Am Chem Soc 118: 11258

    Article  CAS  Google Scholar 

  48. March J (1992). Advanced organic chemistry. Wiley, New York

    Google Scholar 

  49. Chabinyc ML, Craig SL, Regan CK and Brauman JI (1998). Science 279: 1882

    Article  CAS  Google Scholar 

  50. Hase WL (1994). Science 266: 998–1002

    Article  CAS  Google Scholar 

  51. Brauman JI and Olmstead CAL WN (1974). J Am Chem Soc 96: 4030

    Article  CAS  Google Scholar 

  52. Abraham RH and Shaw CD (1992). Dynamics: the geometry of behavior, 2nd edn. Addison-Wesley, Redwood City

    Google Scholar 

  53. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H and Vonschnering HG (1992). Angew Chem Int Ed Engl 31: 187

    Article  Google Scholar 

  54. Burdett JK and McCormick TA (1998). J Phys Chem A 102: 6366

    Article  CAS  Google Scholar 

  55. Nalewajski RF, Koster AM and Escalante S (2005). J Phys Chem A 109: 10038

    Article  CAS  Google Scholar 

  56. Kohout M, Wagner ER and Grin Y (2006). Int J Quantum Chem 106: 1499

    Article  CAS  Google Scholar 

  57. Silvi B (2003). J Phys Chem A 107: 3081–3085

    Article  CAS  Google Scholar 

  58. Matito E, Silvi B, Duran M and Sola M (2006). J Chem Phys 125: 024301

    Article  Google Scholar 

  59. Silvi B and Savin A (1994). Nature 371: 683

    Article  CAS  Google Scholar 

  60. Haussermann U, Wengert S, Hofmann P, Savin A, Jepsen O and Nesper R (1994). Angew Chem Int Ed Engl 33: 2069

    Article  Google Scholar 

  61. Silvi B (2002). J Mol Struct 614: 3

    Article  CAS  Google Scholar 

  62. Lewis GN (1916). J Am Chem Soc 38: 762

    Article  CAS  Google Scholar 

  63. Silvi B (2004). Phys Chem Chem Phys 6: 256

    Article  CAS  Google Scholar 

  64. Poater J, Duran M, Sola M and Silvi B (2005). Chem Rev 105: 3911–3947

    Article  CAS  Google Scholar 

  65. Berski S, Andres J, Silvi B and Domingo LR (2006). J Phys Chem A 110: 13939–13947

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Wallingford

  67. Handy NC, Cohen A (2001) Mol Phys 99:403

  68. Lee CT, Yang WT and Parr RG (1988). Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  69. Harihara PC and Pople JA (1973). Theor Chim Acta 28: 213

    Article  Google Scholar 

  70. Noury S, Krokidis X, Fuster F and Silvi B (1999). Comput Chem 23: 597

    Article  CAS  Google Scholar 

  71. Amira 3.0, (2003) . Concepts I–V, Berlin

  72. Shaik S, Danovich D, Silvi B, Lauvergnat DL and Hiberty PC (2005). Chem-Eur J 11: 6358

    Article  CAS  Google Scholar 

  73. Hiberty PC, Megret C, Song LC, Wu W and Shaik S (2006). J Am Chem Soc 128: 2836

    Article  CAS  Google Scholar 

  74. Polo V, Andres J and Silvi B (2007). J Comput Chem 28: 857

    Article  CAS  Google Scholar 

  75. Song LC, Wu W, Hiberty PC and Shaik S (2006). Chem-Eur J 12: 7458

    Article  CAS  Google Scholar 

  76. Bento AP and Bickelhaupt FM (2007). J Org Chem 72: 2201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Andres.

Additional information

Dedicated to Prof. Nino Russo on the occasion of his 60th birthday.

Contribution to the Nino Russo Special Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polo, V., Gonzalez-Navarrete, P., Silvi, B. et al. An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity SN2 reactions. Theor Chem Account 120, 341–349 (2008). https://doi.org/10.1007/s00214-008-0427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0427-6

Keywords

Navigation