Skip to main content
Log in

Density functional studies of coinage metal nanoparticles: scalability of their properties to bulk

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional plane-wave calculations have been carried out for series of Cu n ,Ag n and Au n particles containing up to 146 (Cu, Ag) and 225 (Au) atoms. Full geometry optimization has been performed for all particles starting from the structures created by cuts from the bulk. In line with previous studies, calculated average nearest-neighbour distances and cohesive energies of the particles linearly depend on such size-derived parameters as the average coordination number of metal atoms and the inverse of the mean particle radius, respectively. Rather accurate linear extrapolation of the observables under scrutiny to the bulk values has been achieved. However, we show that the scalability for particles made of various elements of the same d10s1 electron configuration differs, e.g. for bond lengths in Au n species it is noticeably less perfect than that for Cu n and Ag n ones. Implications of encountered structural peculiarities of the nanoparticles for their reactivity are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Daniel MC, Astruc D (2004) Chem Rev 104: 293–346

    Article  CAS  Google Scholar 

  2. Lambert RM, Pacchioni G (eds) (1997) Chemisorption and reactivity on supported clusters and thin films. Towards an understanding of microscopic processes in catalysis, NATO ASI Series Kluwer, Academic Publishers, Dordrecht

  3. Bäumer M, Freund HJ (1999) Progr Surf Sci 61: 127–198

    Article  Google Scholar 

  4. Fernandez-Garcia M, Anderson JA (eds) (2005) Supported metals in catalysis, Catalytic sciences series, vol. 5, Imperial College Press, London

  5. Wieckowski A, Savinova E, Vayenas CG (eds) (2003) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York

  6. Maeda Y, Okumura M, Tsubota S, Kohyama M, Haruta M (2004) Appl Surf Sci 222: 409–414

    Article  CAS  Google Scholar 

  7. Wang CM, Shutthanandan V, Zhang Y, Thevuthasan S, Thomas LE, Weber WJ, Duscher G (2006) Nucl Instr Meth Phys Res B 242: 380–382

    Article  CAS  Google Scholar 

  8. Pakarinen OH, Barth C, Foster AS, Nieminen RM, Henry CR (2006) Phys Rev B 73:235428 (1–10)

    Google Scholar 

  9. Min BK, Wallace WT, Goodman DW (2006) Surf Sci 600: L7–L11

    Article  CAS  Google Scholar 

  10. Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2005) J Mater Sci 40: 3101

    Article  CAS  Google Scholar 

  11. Boyen H-G, Herzog Th, Kästle G, Weigl F, Ziemann P, Spatz JP, Möller M, Wahrenberg R, Garnier MG, Oelhafen P (2002) Phys Rev B 65:075412 (1–5)

  12. Wilson NT, Johnston RL (2002) J Mater Chem 12: 2913–2922

    Article  CAS  Google Scholar 

  13. Ascencio JA, Liu HB, Pal U, Medina A, Wang ZL (2006) Microsc Res Tech 69: 522–530

    Article  CAS  Google Scholar 

  14. Ricci D, Bongiorno A, Pacchioni G, Landman U (2006) Phys Rev Lett 97:036106 (1–4)

    Google Scholar 

  15. McKenna KP, Sushko PV, Shluger AL (2006) J Chem Phys 126:154704 (1–9)

    Google Scholar 

  16. Yang X, Cai W, Shao X (2007) J Phys Chem A 111: 5048–5056

    Article  CAS  Google Scholar 

  17. Xiao L, Tollberg B, Hu X, Wang L (2006) J Chem Phys 124:114309 (1–10)

  18. Aprà E, Ferrando R, Fortunelli A (2006) Phys Rev B 73:205414 (1–5)

    Google Scholar 

  19. Häberlen OD, Chung SC, Stener M, Rösch N (1997) J Chem Phys 106: 5189–5201

    Article  Google Scholar 

  20. Krüger S, Vent S, Rösch N (1997) Ber Bunsenges Phys Chem 101: 1640–1643

    Google Scholar 

  21. Krüger S, Vent S, Nörtemann F, Staufer M, Rösch N (2001) J Chem Phys 115: 2082–2087

    Article  CAS  Google Scholar 

  22. Barnard AS, Curtiss LA (2006) Chem Phys Chem 7: 1544–1553

    CAS  Google Scholar 

  23. Yudanov IV, Sahnoun R, Neyman KM, Rösch N (2002) J Chem Phys 117: 9887–9896

    Article  CAS  Google Scholar 

  24. Yudanov IV, Sahnoun R, Neyman KM, Rösch N, Hoffmann J, Schauermann S, Johánek V, Unterhalt H, Rupprechter G, Libuda J, Freund HJ (2003) J Phys Chem B 107: 255–264

    Article  CAS  Google Scholar 

  25. Yudanov IV, Neyman KM, Rösch N (2004) Phys Chem Chem Phys 6: 116–123

    Article  CAS  Google Scholar 

  26. Neyman KM, Sahnoun R, Inntam C, Hengrasmee S, Rösch N (2004) J Phys Chem B 108: 5424–5430

    Article  CAS  Google Scholar 

  27. Neyman KM, Vayssilov GN, Rösch N (2004) J Organomet Chem 689: 4384–4394

    Article  CAS  Google Scholar 

  28. Neyman KM, Inntam C, Gordienko AB, Yudanov IV, Rösch N (2005) J Chem Phys 122:174705 (1–9)

    Google Scholar 

  29. Yudanov IV, Neyman KM, Rösch N (2006) Phys Chem Chem Phys 8: 2396–2401

    Article  CAS  Google Scholar 

  30. Taylor HS (1925) Proc R Soc A 108: 105–111

    Article  CAS  Google Scholar 

  31. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I (1999) Phys Rev Lett 83: 1814–1817

    Article  Google Scholar 

  32. Dahl S, Tornqvist E, Chorkendorff I (2000) J Catal 192: 381–390

    Article  CAS  Google Scholar 

  33. Wolf RM, Bakker JW, Nieuwenhuys BE (1991) Surf Sci 246: 135–140

    Article  CAS  Google Scholar 

  34. Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Science 273: 1688–1690

    Article  CAS  Google Scholar 

  35. Banholzer WF, Masel RI (1984) J Catal 85: 127–134

    Article  CAS  Google Scholar 

  36. Klier K, Hess JS, Herman RG (1997) J Chem Phys 107: 4033–4043

    Article  CAS  Google Scholar 

  37. Uhara I, Kishimoto S, Yoshida Y, Hikino T (1965) J Phys Chem 69: 880–882

    Article  CAS  Google Scholar 

  38. Jia J, Haraki K, Kondo JN, Domen K, Tamaru K (2000) J Phys Chem B 104: 11153–11156

    Article  CAS  Google Scholar 

  39. Uetsuka H, Watanabe K, Kimpara K, Kunimori K (1999) Langmuir 15: 5795–5799

    Article  CAS  Google Scholar 

  40. Gonzalez S, Loffreda D, Sautet P, Illas F (2007) J Phys Chem C 111: 11376–11383

    Article  CAS  Google Scholar 

  41. Corma A, Boronat M, González S, Illas F (2007) Chem Comm 3371–3373

  42. Belling T, Grauschopf T, Krüger S, Mayer M, Nörtemann F, Staufer M, Zenger C, Rösch N (1999) High performance scientific and engineering computing. In: Bungartz H-J, Durst F, Zenger C (eds) Lecture notes in computational science and engineering. Springer, Heidelberg vol 8, p 439

  43. Belling T, Grauschopf T, Krüger S, Nörtemann F, Staufer M, Mayer M, Nasluzov VA, Birkenheuer U, Hu A, Matveev AV, Shor AM, Fuchs-Rohr MSK, Neyman KM, Ganyushin DI, Kerdcharoen T, Woiterski A, Gordienko AB, Majumder S, Rösch N (2004) PARAGAUSS, Version 3.0, TU München

  44. Viñes F, Illas F, Neyman KM (2007) Angew Chem Int Ed 46: 7094–7097

    Article  CAS  Google Scholar 

  45. Kresse G, Furthmüller J (1996) Comp Mat Sci 6: 15–50

    Article  CAS  Google Scholar 

  46. Kresse G, Hafner J (1993) Phys Rev B 47: 558–561

    Article  CAS  Google Scholar 

  47. Kresse G, Furthmüller J (1996) Phys Rev B 54: 11169–1186

    Article  CAS  Google Scholar 

  48. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58: 1200–1211

    Article  CAS  Google Scholar 

  49. Perdew JP, Wang Y (1992) Phys Rev B 45: 13244–13249

    Article  Google Scholar 

  50. Blöchl PE (1994) Phys Rev B 50: 17953–17979

    Article  Google Scholar 

  51. Kresse G, Joubert D (1999) Phys Rev B 59: 1758–1775

    Article  CAS  Google Scholar 

  52. CRC Handbook of Chemistry and Physics (1983) Weast RC (ed), 64 ed, CRC Press, Boca Raton FL

  53. Wang L, Cheng H (2004) Phys Rev B 69:045404 (1–7)

  54. Wang L, Cheng H (2004) Phys Rev B 69:165417 (1–12)

  55. Häkkinen H, Moseler M, Landman U (2002) Phys Rev Lett 89:033401 (1–4)

    Google Scholar 

  56. Dong Y, Springborg M (2007) J Phys Chem C 111: 12528–12535

    Article  CAS  Google Scholar 

  57. Kittel C (1956) Introduction to solid state physics. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Illas.

Additional information

Contribution to the Nino Russo Special Issue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roldán, A., Viñes, F., Illas, F. et al. Density functional studies of coinage metal nanoparticles: scalability of their properties to bulk. Theor Chem Account 120, 565–573 (2008). https://doi.org/10.1007/s00214-008-0423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-008-0423-x

Keywords

Navigation