Skip to main content
Log in

Global warming potential predictions for hydrofluoroethers with two carbon atoms

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Global warming potentials are predicted using computational chemistry and thermodynamics approaches for four hydrofluoroethers where no data have previously been available. We also compare results with the same methodology for six other species. We combine predictions of radiative forcing values from density functional theory computations at the B3LYP/6-31g* level of theory with previous experimentally determined or newly estimated hydroxyl radical-hydrogen abstraction rate constants to obtain these global warming potentials. We find that many of the HFEs studied have lower global warming potentials than the hydrofluorocarbons and chlorofluorocarbons they may soon replace, although other environmental and technical issues may need to be addressed first.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cavalli F, Glasius M, Hjorth J, Rindone B and Jensen NR (1998). Atmospheric lifetimes, infrared spectra and degradation products of a series of hydrofluoroethers. Atmos Environ 32(21): 3767–3773

    Article  CAS  Google Scholar 

  2. Chen L, Kutsuna S, Nohara K, Takeuchi K and Ibusuki T (2001). Kinetics and mechanisms for the reactions of CF3OCH3 and CF3OC(O)H with OH radicals using an environmental reaction chamber. J Phys Chem A 105: 10854–10859

    Article  CAS  Google Scholar 

  3. Chen L, Kutsuna S, Tokuhashi K, Sekiya A, Takeuchi K and Ibusuki T (2003). Kinetics for the gas-phase reactions of OH radicals with the hydrofluoroethers CH2FCF2OCHF2, CHF2CF2OCH2CF3, CF3CHFCF2OCH2CF3, and CF3CHFCF2 OCH2CF2CHF2 at 268–308 K. Int J Chem Kinet 35(6): 239–245

    Article  CAS  Google Scholar 

  4. Chen L, Kutsuna S, Tokuhashi K and Sekiya A (2005). Kinetics study of the gas-phase reactions of CHF2CF2OCHF2 and CF3CHFCF2OCH2CF2CF3 with OH radicals at 253–328 K. Chem Phys Lett 403: 180–184

    Article  CAS  Google Scholar 

  5. Chen L, Kutsuna S, Tokuhashi K, Sekiya A, Tamai R and Hibino Y (2005). Kinetics and mechanism of (CF3)2CHOCH3 reaction with OH radicals in an environmental reaction chamber. J Phys Chem A 109: 4766–4771

    Article  CAS  Google Scholar 

  6. Christensen LK, Wallington TJ, Guschin A and Hurley MD (1999). Atmospheric degradation mechanism of CF3OCH3. J Phys Chem A 103: 4202–4208

    Article  CAS  Google Scholar 

  7. Christidis N, Hurley MD, Pinnock S, Shine KP and Wallington TJ (1997). Radiative forcing of climate change by CFC-11 and possible CFC replacements. J Geophys Res 102(D16): 19597–19609

    Article  CAS  Google Scholar 

  8. Good DA, Kamboures M, Santiano R and Francisco JS (1999). Atmospheric oxidation of fluorinated ethers, E143a (CF3OCH3) and E134 (CHF2OCHF2) and E125 (CHF2OCF3). J Phys Chem A 103: 9230–9240

    Article  CAS  Google Scholar 

  9. Heathfield AE, Anastasi C, McCulloch A and Nicolaisen FM (1998). Integrated infrared absorption coefficients of several partially fluorinated ether compounds: CF3OCF2H, CF2HOCF2H, CH3OCF2CF2H, CH3OCF2CFClH, CH3CH2OCF2CF2H, CF3CH2OCF2CF2H and CH2 = CHCH2OCF2CF2H. Atmos Environ 32(16): 2825–2833

    Article  CAS  Google Scholar 

  10. Heathfield AE, Anastasi C, Pagsberg P and McCulloch A (1998). Atmospheric lifetimes of selected fluorinated ether compounds. Atmos Environ 32(4): 711–717

    Article  CAS  Google Scholar 

  11. Horn A, Marstokk K-M, Mollendal H, Nielsen CJ and Powell DL (1999). Conformational properties of bis(difluoromethyl) ether as studied by microwave, infrared, Raman spectroscopy and by ab initio computations. J Mol Struct 509: 221–236

    Article  CAS  Google Scholar 

  12. Imasu R, Suga A and Matsuno T (1995). Radiative effects and halocarbon global warming potentials of replacement compounds for chloroflurocarbons. J Met Soc Jpn 76(6): 1123–1136

    Google Scholar 

  13. Jain AK, Briegleb BP, Minschewaner K and Wuebbles DJ (2000). Radiative forcings and global warming potentials of 39 greenhouse gases. J Geophys Res Atmos 105(D16): 20773–20790

    Article  CAS  Google Scholar 

  14. Jain AK, Li Z, Naik V, Wuebbles DJ, Good DA, Hansen JC and Francisco JS (2001). Evaluation of the atmospheric lifetime and radiative forcing on climate for 1,2,2,2-tetrafluoroethyl trifluoromethyl ether (CF3OCHFCF3). J Geophys Res 106(D12): 12615–12618

    Article  CAS  Google Scholar 

  15. Lazarou YG and Papagiannakopoulos P (1999). Theoretical investigation of the thermochemistry of hydrofluoroethers. Chem Phys Lett 301: 19–28

    Article  CAS  Google Scholar 

  16. Marchionni G, Silvani R, Fontana G, Malinverno G and Visca M (1999). Hydrofluoropolyethers. J Fluorine Chem 95: 41–50

    Article  CAS  Google Scholar 

  17. Kawasaki NY, Guschin A, Molina LT, Molina MJ and Wallington TJ (2000). Atmospheric chemistry of n-C3F7OCH3: Reaction with OH radicals and Cl atoms and atmospheric fate of n-C3F7OCH2O(*) radicals. Environ Sci Technol 34: 2973–2978

    Article  CAS  Google Scholar 

  18. Owens JG (1999) Segregated hydrofluoroethers: low GWP alternatives to HFCs and PFCs., Intergovernmental panel on climate change, working group III, mitigation of climate change. Petten, Netherlands

  19. Oyaro N, Sellevag SR and Nielsen CJ (2005). Atmospheric chemistry of hydrofluoroethers: Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials. J Phys Chem A 109(2): 337–346

    Article  CAS  Google Scholar 

  20. Sekiya A and Misaki S (2000). The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs. J Fluorine Chem 101: 215–221

    Article  CAS  Google Scholar 

  21. Smith ND New chemical alternatives for CFCs and HCFCs. 1992, US EPA, Research Triangle Park

  22. Takahashi K, Matsumi Y, Wallington TJ and Hurley MD (2002). Atmospheric chemistry of CF3CFHOCF3: Reaction with OH radicals, atmospheric lifetime, and global warming potential. J Geol 107(D21): 4574

    Google Scholar 

  23. Tokuhashi K, Takahasi A, Kaise M, Kondo S, Sekiya A, Yamashita S and Ito H (1999). Rate constants for the reactions of OH radicals with CH3OCF2CF3, CH3OCF2CF2CF3, and CH3OCF(CF3)2. Int J Chem Kinet 31(12): 846–853

    Article  CAS  Google Scholar 

  24. Tokuhashi K, Chen L, Kutsuna S, Uchimaru T, Sugie M and Sekiya A (2004). Environmental assessment of CFC alternatives: Rate constants for the reactions of OH radicals with fluorinated compounds. J Fluorine Chem 125: 1801–1807

    Article  CAS  Google Scholar 

  25. Tokuhashi KTA, Kaise M, Kondo S, Sekiya A, Yamashita S and Ito H (2000). Rate constants for the reactions of OH radicals with CH3OCF2CHF2, CHF2OCH2CF2CHF2, CHF2OCH2CF2CF3, and CF3CH2OCF2CHF2 over the temperature range 250–430 K. J Phys Chem A 104: 1165–1170

    Article  CAS  Google Scholar 

  26. Tsai W-T (2005). Environmental risk assessment of hydrofluoroethers (HFEs). J Hazardous Mater A119: 69–78

    Article  CAS  Google Scholar 

  27. Ulic SE and Oberhammer H (2004). Fluorinated dimethyl ethers, CH2FOCH2F,CHF2OCHF2 and CF3OCHF2: Unusual conformational properties. J Phys Chem A 108: 1844–1850

    Article  CAS  Google Scholar 

  28. Urata S, Takada A, Uchimaru T and Chandra AK (2003). Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals. Chem Phys Lett 368: 215–223

    Article  CAS  Google Scholar 

  29. Visca M, Silvani R and Marchionni G (1997). Hydrofluoropolyethers: Another alternative to CFCs. Chemtech 2: 33–37

    Google Scholar 

  30. Wallington TJ, Scheneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT and Wooldridge PW (1997). Atmospheric chemistry of HFE-7100 (C4F9OCH3): Reaction with OH radicals, UV spectra and kinetic data for C4F9OCH2(dot) and C4F9OCH2O2(dot) radicals, and the atmospheric fate of C4F9OCH2O(dot) radicals. J Phys Chem A 101(44): 8264–8274

    Article  CAS  Google Scholar 

  31. Wallington TJ, Hurley MD, Fedotov V, Morrell C and Hancock G (2002). Atmospheric chemistry of CF3CH2OCHF2 and CF3CHClOCHF2: Kinetics and mechanisms of reaction with Cl atoms and OH radicals and atmospheric fate of CF3C(O(dot))HOCHF2 and CF3C(O(dot))ClOCHF2 radicals. J Phys Chem A 106: 8391–8398

    Article  CAS  Google Scholar 

  32. Wallington TJ, Hurley MD, Nielsen OJ and Andersen MPS (2004). Atmospheric chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl atoms and OH radicals, degradation mechanism, and global warming potentials. J Phys Chem A 108(51): 11333–11338

    Article  CAS  Google Scholar 

  33. Wu J-Y, Li J-Y, Li Z-S and Sun C-C (2004). Theoretical study of the reactions of CF3OCHF2 with the hydroxyl radical and the chlorine atom. Chem Phys Chem 5: 1336–1344

    CAS  Google Scholar 

  34. Blowers P, Moline DM, Tetrault KF, Wheeler RR and Tuchawena SL (2007). Prediction of radiative forcing values for hydrofluoroethers using density functional theory methods. J Geophys Res Atmos 112: D15108

    Article  CAS  Google Scholar 

  35. Blowers P, Moline DM, Tetrault KF, Wheeler RR and Tuchawena SL (2007). Global Warming Potentials of Hydrofluoroethers. ES&T, submitted for publication

    Google Scholar 

  36. Lashof DA and Ahuja DR (1990). Relative contributions of greenhouse gas emissions to global warming. Nature 344: 529–531

    Article  CAS  Google Scholar 

  37. Highwood EJ and Shine KP (2000). Radiative forcing and global warming potentials of 11 halogenated compounds. J Quant Spectrosc Radiat Transfer 66: 169–183

    Article  CAS  Google Scholar 

  38. Houghton JT (1995). Climate change, 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. University Press, New York

    Google Scholar 

  39. Wuebbles DJ (1995). Weighing functions for ozone deplection and greenhouse gas effects on climate. Annu Rev Energy Environ 20: 45–70

    Article  Google Scholar 

  40. Patten KO Jr., Li Z and Wuebbles DJ (2000). Estimates of atmospheric lifetimes and ozone depletion potentials for the bromopentafluoropropane isomers. J Geophys Res 105(D9): 11625–11631

    Article  CAS  Google Scholar 

  41. Prather M and Spivakovsky CM (1990). Tropospheric OH and the lifetimes of hydrochlorofluorocarbons. J Geophys Res Atmos 95(D11): 18723–18729

    Article  Google Scholar 

  42. DeMore WB (1996). Experimental and estimated rate constants for the reactions of hydroxyl radicals with several halocarbons. J Phys Chem 100(14): 5813–5820

    Article  CAS  Google Scholar 

  43. Naik V, Jain AK, Patten KO and Wuebbles DJ (2000). Consistent sets of atmospheric lifetimes and radiative forcings on climate for CFC replacements: HCFCs and HFCs. J Geophys Res 105(D5): 6903–6914

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr., Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.9. Gaussian Inc., Pittsburgh

  45. Scott AP and Radom L (1996). Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Moller–Plesset, quadratic configuration interaction, density functional theory and semiempirical scale factors. J Phys Chem 100: 16502–16513

    Article  CAS  Google Scholar 

  46. Ochterski JW (2000). Thermochemistry in Gaussian. Guassian, New York

    Google Scholar 

  47. Pitzer KS and Gwinn WD (1942). Energy levels and thermodynamic functions for molecules with internal rotation I. Rigid frame with attached tops. J Chem Phys 10: 428–440

    Article  CAS  Google Scholar 

  48. Pinnock S, Hurley MD, Shine KP, Wallington TJ and Smyth TJ (1995). Radiative forcing of climate by hydrochloroflurocarbons and hydrofluorocarbons. J Geophys Res Atmos 100(D11): 23227–23238

    Article  CAS  Google Scholar 

  49. Papasavva S, Tai S, Illinger KH and Kenny JE (1997). Infrared radiative forcing of CFC substitutes and their atmospheric reaction products. J Geophys Res 102: 13643–13650

    Article  CAS  Google Scholar 

  50. Papasavva S, Illinger KH and Kenny JE (1996). Ab initio calculations on fluoroethanes: Geometries, dipole moments, vibrational frequencies, and infrared intensities. J Phys Chem 100(24): 10100–10110

    Article  CAS  Google Scholar 

  51. Sidebottom HW and Franklin J (1996). The atmospheric fate and impact of hydrochloro-fluorocarbons and chlorinated solvents. Pure Appl Chem 68(9): 1757–1769

    Article  CAS  Google Scholar 

  52. Clerbaux C, Colin R, Simon PC and Granier C (1993). Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons. J Geophys Res 98(D6): 10491–10497

    Article  Google Scholar 

  53. Elrod MJ (1999). Greenhouse warming potentials from the infrared spectroscopy of atmospheric gases. J Chem Educ 76(12): 1702–1705

    Article  CAS  Google Scholar 

  54. Gohar LK, Myhre G and Shine KP (2004). Updated radiative forcing estimates of four halocarbons. J Geophys Res Atmos 109: D01107

    Article  Google Scholar 

  55. Forster PMdF, Burkholder JB, Clerbaux C, Coheur PF, Dutta M, Gohar LK, Hurley MD, Myhre G, Portman RW, Shine KP, Wallington TJ and Wuebbles D (2005). Resolution of the uncertainties in the radiative forcing of HFC-134a. J Quant Spectrosc Radiat Transfer 93(4): 447–460

    Article  CAS  Google Scholar 

  56. Fuglestvedt JS, Berntsen TK, Godal O, Sausen R, Shine KP and Skodvin T (2003). Metrics of climate change: assessing radiative forcing and emission indicies. Climatic Change 58: 267–331

    Article  Google Scholar 

  57. Sander SP, Friedl RR, Ravishankara AR, Golden DM, Kolb CE, Kurylo MJ, Huie RE, Orkin VL, Molina MJ, Moortgat GK, Finlayson-Pitts BJ (2003) Chemical kinetics and photochemical data for use in atmospheric studies. Jet Propulsion Laboratory, California Institute of Technology, Pasadena

  58. DeMore WB and Bayes KD (1999). Rate constants for the reactions of hydroxyl radical with several alkanes, cycloalkanes and dimethyl ether. J Phys Chem A 103: 2649–2654

    Article  CAS  Google Scholar 

  59. Wallington TJ, Liu R, Dagaut P and Kurylo MJ (1988). The gas phase reactions of hydroxyl radicals with a series of aliphatic ethers over the temperature range 240–400 K. Int J Chem Kinet 20: 41–49

    Article  CAS  Google Scholar 

  60. Tully FP and Droege AT (1987). Kinetics of the reactions of the hydroxyl radical with dimethyl ether and diethyl ether. Int J Chem Kinet 19: 251–259

    Article  CAS  Google Scholar 

  61. Arif M, Dellinger B and Taylor PH (1997). Rate coefficients of hydroxyl radical reaction with dimethyl ether and methyl tert-butyl ether over an extended temperature range. J Phys Chem A 101: 2436–2441

    Article  CAS  Google Scholar 

  62. Mellouki A, Teton S and LeBras G (1995). Kinetics of OH radical reactions with a series of ethers. Int J Chem Kinet 27: 791–805

    Article  CAS  Google Scholar 

  63. Perry RAAR and Pitts JN (1977). Rate constants for the reaction of OH radicals with dimethyl ether and vinyl methyl ether over the temperature range 299–429 K. J Chem Phys 67(2): 611–614

    Article  CAS  Google Scholar 

  64. Nelson L, Rattigan O, Neavyn R, Sidebottom H, Treacy J and Nielsen OJ (1990). Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alcohols and ethers at 298 K. Int J Chem Kinet 22: 1111–1126

    Article  CAS  Google Scholar 

  65. Wallington TJ, Andino JM, Skewes LM, Siegl WO and Japar SM (1989). Kinetics of the reaction of OH radicals with a series of ethers under simulated atmospheric conditions at 295 K. Int J Chem Kinet 21: 993–1001

    Article  CAS  Google Scholar 

  66. Bonard A, Daele V, Delfau J-L and Vovelle C (2002). Kinetics of OH radical reactions with methane in the temperature range 295–660 K and with dimethyl ether and methyl-tert-butyl ether in the temperature range 295–618 K. J Phys Chem A 106: 4384–4389

    Article  CAS  Google Scholar 

  67. Atkinson RB, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ and Troe J (2006). Evaluated kinetic and photchemical data for atmospheric chemistry: volume II—gas phase reactions of organic species. Atmos Chem Phys 6: 3625–4055

    Article  CAS  Google Scholar 

  68. Chandra AK, Uchimaru T, Urata S, Sugie M and Sekiya A (2003). Estimation of rate constants for hydrogen atom abstraction by OH radicals using the C-H bond dissociation enthalpies: Haloalkanes and haloethers. Int J Chem Kinet 35(3): 130–138

    Article  CAS  Google Scholar 

  69. Good DA, Francisco JS, Jain AK and Wuebbles DJ (1998). Lifetimes and global warming potentials for dimethyl ether and for fluorinated ethers: CH3OCF3 (E143a), CHF2OCHF2 (E134), CHF2OCF3 (E125). J Geophys Res Atmos 103(D21): 28181–28186

    Article  CAS  Google Scholar 

  70. Myhre G, Nielsen CJ, Powell DL and Stordal F (1999). Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers. Atmos Environ 33: 4447–4458

    Article  CAS  Google Scholar 

  71. Garland NL, Medhurst LJ and Nelson HH (1993). Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra. J Geophys Res 98(D12): 23107–23111

    Article  CAS  Google Scholar 

  72. Hsu K-J and DeMore WB (1995). Temperature dependent rate constants and substituent effects for the reactions of hydroxyl radicals with three partially fluorinated ethers. J Phys Chem 99: 11141–11146

    Article  CAS  Google Scholar 

  73. Orkin VL, Villenave E, Huie RE and Kurylo MJ (1999). Atmospheric lifetimes and global warming potential of hydrofluoroethers: reactivity toward OH, UV spectra, and IR absorption cross sections. J Phys Chem A 103: 9770–9779

    Article  CAS  Google Scholar 

  74. Wilson EW Jr., Sawyer AA and Sawyer HA (2001). Rates of reaction for cyclopropane and difluoromethoxydifluoromethane with hydroxyl radicals. J Phys Chem A 105: 1445–1448

    Article  CAS  Google Scholar 

  75. Hsu K-J and DeMore WB (1995). Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes and propanes by relative rate measurements. J Phys Chem 99: 1235–1244

    Article  CAS  Google Scholar 

  76. Orkin VL, Khamaganov VG, Guschin AG, Kasimovskaya EE, Larin IK (1993) Development of atmospheric characteristics of chlorine-free alternative fluorocarbons: Report on R-134a & E-143a. Oak Ridge National Laboratory: Oak Ridge

  77. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2000, EPA 430-R-02-003. (2002) US EPA, Office of Atmospheric Programs

  78. McGee IE, Dobransky MA and Ingold KA (1998). HFC-245fa as a blowing agent for water heater foam insulation. J Cellular Plastics 34(2): 174

    CAS  Google Scholar 

  79. Prociak A, Pielichowski J, Modesti M and Simioni F (1997). Influence of different flame retardants on fire behaviour of rigid polyurethane foams blown with n-pentane. Cellular Polymers 16(4): 284–295

    CAS  Google Scholar 

  80. Bivens DB and Minor BH (1998). Fluoroethers and other next generation fluids. Int J Refrig 51(7): 567–576

    Article  Google Scholar 

  81. Sihra K, Hurley MD, Shine KP and Wallington TJ (2001). Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons. J Geophys Res Atmos 106(D17): 20493–20506

    Article  CAS  Google Scholar 

  82. Imasu R, Suga A, Matsuno T (1995) Radiative effects and halocarbon global warming potentials of replacement compounds for chloroflurocarbons. J Met Soc Jpn 73(6)

  83. Zhang Z, Saini RD, Kurylo MJ and Huie RE (1992). Rate constants for the reactions of the hydroxyl radical with several partially fluorinated ethers. J Phys Chem 96: 9301–9304

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Blowers.

Electronic supplementary material

Below are the electronic supplementary materials.

ESM 1 (PDF 649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blowers, P., Tetrault, K.F. & Trujillo-Morehead, Y. Global warming potential predictions for hydrofluoroethers with two carbon atoms. Theor Chem Account 119, 369–381 (2008). https://doi.org/10.1007/s00214-007-0394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0394-3

Keywords

Navigation