Skip to main content
Log in

The performance of the Hartree–Fock–Wigner correlation model for light diatomic molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Results of the Hartree–Fock–Wigner correla- tion model for diatomic molecules with light atoms (H2, LiH, Li2, F2, He2, Ne2) using two different atomic parametrizations and one molecular parametrization of the correlation kernel are presented and interpreted in terms of Wigner intracules as well as differences thereof. The molecular parametrization yields encouraging results for simple systems exhibiting covalent or ionic bonding. However, similar to the purely atomic parametrizations severe overestimations of the attractive interaction in van der Waals systems is observed. It is argued that the remaining shortcommings partly result from the restriction of the currently used correlation kernel to be symmetric in relative position and relative momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner P.R. (eds) (1998). Encyclopedia of computational chemistry. Wiley, Chichester

    Google Scholar 

  2. Szabo A, Ostlund N (1989) Modern quantum chemistry: Introduction to advanced electronic structure theory dover

  3. Parr RG and Yang W (1989). Density-functional theory of atoms and molecules. Oxford, New York

    Google Scholar 

  4. Kohn W, Becke AD and Parr RG (1996). J Phys Chem 100: 12974

    Article  CAS  Google Scholar 

  5. Stollhoff G and Fulde P (1980). J Chem Phys 73: 4548

    Article  CAS  Google Scholar 

  6. Stoll H (1992). Phys Rev B 46: 6700

    Article  CAS  Google Scholar 

  7. Shukla A, Dolg M, Fulde P and Stoll H (1999). Phys Rev B 60: 5211

    Article  CAS  Google Scholar 

  8. Pisani C, Pusso M, Capecchi G, Casassa S, Dovesi R, Maschio L, Zicovich-Wilson C and Schütz M (2005). J Chem Phys 122: 094113

    Article  CAS  Google Scholar 

  9. Gill PMW, Crittenden DL, O’Neill DP and Besley NA (2006). Phys Chem Chem Phys 8: 15

    Article  CAS  Google Scholar 

  10. Gill PMW, O’Neill DP and Besley NA (2003). Theor Chem Acc 109: 241

    Article  CAS  Google Scholar 

  11. Wigner W (1932). Phys Rev 40: 749

    Article  CAS  Google Scholar 

  12. Besley NA, O’Neill DP and Gill PMW (2003). J Chem Phys 118: 2033

    Article  CAS  Google Scholar 

  13. Besley NA and Gill PMW (2004). J Chem Phys 120: 7290

    Article  CAS  Google Scholar 

  14. Gill PMW, Besley NA and O’Neill DP (2004). Int J Quant Chem 100: 166

    Article  CAS  Google Scholar 

  15. Gill PMW and O’Neill DP (2005). J Chem Phys 122: 094110

    Article  CAS  Google Scholar 

  16. Fondermann R, Hanrath M, Dolg M and O’Neill DP (2005). Chem Phys Lett 413: 237

    Article  CAS  Google Scholar 

  17. Rassolov VA (1999). J Chem Phys 110: 3672

    Article  CAS  Google Scholar 

  18. Preuss H (1955). Z Naturforsch A 10: 267

    Google Scholar 

  19. Whitten JL (1963). J Chem Phys 39: 349

    Article  CAS  Google Scholar 

  20. Staemmler V Integral and Hartree–Fock modules of the Bochum suite of ab initio programs

  21. Driesler F and Ahlrichs R (1973). Chem Phys Lett 23: 571

    Article  Google Scholar 

  22. Ahlrichs R (1974). Theor Chim Acta 33: 157

    Article  CAS  Google Scholar 

  23. Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  24. Miehlich B, Savin A, Stoll H and Preuss H (1989). Chem Phys Lett 157: 200

    Article  CAS  Google Scholar 

  25. Wilson AK, Mourik Tv and Dunning TH (1997). J Mol Struct (THEOCHEM) 388: 339

    Google Scholar 

  26. Feller D unpublished set for Li

  27. O’Neill DP and Gill PMW (2006). Recent advances in electron correlation methodology. Oxford, New York

    Google Scholar 

  28. Ahlrichs R and Kutzelnigg W (1968). J Chem Phys 48: 1819

    Article  CAS  Google Scholar 

  29. van Mourik T, Wilson AK and Dunning TH Jr (1999). Mol Phys 96: 529

    Article  Google Scholar 

  30. Aziz RA, Janzen AR and Moldover MR (1995). Phys Rev Lett 74: 1586

    Article  CAS  Google Scholar 

  31. Aziz RA and Slaman MJ (1989). Chem Phys 130: 187

    Article  CAS  Google Scholar 

  32. Huber KP and Herzberg G (1979). Molecular spectra and molecular structure, IV, constants of diatomic molecules. Van Nostrand Reinhold, New York

    Google Scholar 

  33. Lie GC and Clementi E (1974). The J of Chem Phys 60: 1275

    Article  CAS  Google Scholar 

  34. Lie GC and Clementi E (1974). The J of Chem Phys 60: 1288

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Fondermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fondermann, R., Hanrath, M. & Dolg, M. The performance of the Hartree–Fock–Wigner correlation model for light diatomic molecules. Theor Chem Account 118, 777–783 (2007). https://doi.org/10.1007/s00214-007-0360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0360-0

Keywords

Navigation