Skip to main content
Log in

Free Energy Calculations with Non-Equilibrium Methods: Applications of the Jarzynski Relationship

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present an introduction to the Jarzynski relationship that makes a strong connection, for a thermodynamic transformation, between the distribution of non-equilibrium work values and the corresponding equilibrium free energy differences. The relationship is discussed in the context of sampling issues, high level parallel computing and convergence criteria. We discuss three different applications by our group: mechanical unfolding of peptides, mixed quantum/classical free energy calculations in enzymes, and ligand escape pathways

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chipot C, Pearlman DA (2002) Free energy calculations: the long and winding gilded road. Mol Simul 28(1–2):1–12

    Article  CAS  Google Scholar 

  2. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303(5665):1813–1818

    Article  PubMed  CAS  Google Scholar 

  3. Ridder L et al (2002) Quantum mechanical/molecular mechanical free energy Simulations of the glutathione S-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J Am Chem Soc 124(33):9926–9936

    Article  PubMed  CAS  Google Scholar 

  4. Shirts MR et al (2003) Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J Chem Phys 119(11):5740–5761

    Article  CAS  Google Scholar 

  5. Jarzynski C (1997) Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E 56(5):5018–5035

    Article  CAS  Google Scholar 

  6. Jarzynski C (1998) Equilibrium free energies from nonequilibrium processes. Acta Phys Pol B 29(6):1609–1622

    CAS  Google Scholar 

  7. Jarzynski C (2000) Hamiltonian derivation of a detailed fluctuation theorem. J Stat Phys 98(1–2):77–102

    Article  Google Scholar 

  8. Jarzynski C (2001) How does a system respond when driven away from thermal equilibrium?. Proc Nat Acad Sci USA 98(7):3636–3638

    Article  PubMed  CAS  Google Scholar 

  9. Atilgan E, Sun SX (2004) Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics. J Chem Phys 121(21):10392–10400

    Article  PubMed  CAS  Google Scholar 

  10. Cohen EGD, Mauzerall D (2004) A note on the Jarzynski equality. J Stat Mech Theory Exp P07006[cond.mat/0406128]

  11. Crooks GE (1998) Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J Stat Phys 90(5–6):1481–1487

    Article  Google Scholar 

  12. Crooks GE (1999) Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys Rev E 60(3):2721–2726

    Article  CAS  Google Scholar 

  13. Crooks GE (2000) Path-ensemble averages in systems driven far from equilibrium. Phys Rev E 61(3):2361–2366

    Article  CAS  Google Scholar 

  14. Evans DJ (2003) A non-equilibrium free energy theorem for deterministic systems. Mol Phys 101(10):1551–1554

    Article  CAS  Google Scholar 

  15. Evans DJ, Searles DJ (2002) The fluctuation theorem. Adv Phys 51(7):1529–1585

    Article  Google Scholar 

  16. Gullingsrud JR, Braun R, Schulten K (1999) Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J Comput Phys 151(1):190–211

    Article  CAS  Google Scholar 

  17. Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Nat Acad Sci USA 98(7):3658–3661

    Article  PubMed  CAS  Google Scholar 

  18. Hummer G, Szabo A (2003) Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85(1):5–15

    PubMed  CAS  Google Scholar 

  19. Jarzynski C (2004) Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J Stat Mech Theory Exp P09005[Cond.mat/99121121]

  20. Jou D, Casas-Vazquez J (2004) About some current frontiers of the second law. J Non-Equilib Thermodyn 29(4):345–357

    Article  CAS  Google Scholar 

  21. Keller D, Swigon D, Bustamante C (2003) Relating single-molecule measurements to thermodynamics. Biophys J 84(2):733–738

    Article  PubMed  CAS  Google Scholar 

  22. Rickman JM, LeSar R (2002) Free-energy calculations in materials research. Ann Rev Mater Res 32:195–217

    Article  CAS  Google Scholar 

  23. Ritort F (2004) Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism. J Stat Mech Theory Exp P10016[Cond.mat/0401311]

  24. Ritort F, Bustamante C, Tinoco I (2002) A two-state kinetic model for the unfolding of single molecules by mechanical force. Proc Nat Acad Sci USA 99(21):13544–13548

    Article  PubMed  CAS  Google Scholar 

  25. Schurr JM, Fujimoto BS (2003) Equalities for the nonequilibrium work transferred from an external potential to a molecular system: analysis of single-molecule extension experiment. J Phys Chem B 107(50):14007–14019

    Article  CAS  Google Scholar 

  26. Sun SX (2003) Equilibrium free energies from path sampling of nonequilibrium trajectories. J Chem Phys 118(13):5769–5775

    Article  CAS  Google Scholar 

  27. Ytreberg FM, Zuckerman DM (2004) Single-ensemble nonequilibrium path-sampling estimates of free energy differences. J Chem Phys 120(23):10876–10879

    Article  PubMed  CAS  Google Scholar 

  28. Gore J, Ritort F, Bustamante C (2003) Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc Nat Acad Sci USA 100(22):12564–12569

    Article  PubMed  CAS  Google Scholar 

  29. Hermans J (1991) Simple analysis of noise and hysteresis in (slow-growth) free-energy simulations. J Phys Chem 95(23):9029–9032

    Article  CAS  Google Scholar 

  30. Hu H, Yun RH, Hermans J (2002) Reversibility of free energy simulations: slow growth may have a unique advantage (with a note on use of Ewald summation. Mol Simul 28(1–2):67–80

    Article  CAS  Google Scholar 

  31. Hummer G (2001) Fast-growth thermodynamic integration: Error and efficiency analysis. J Chem Phys 114(17):7330–7337

    Article  CAS  Google Scholar 

  32. Rodriguez-Gomez D, Darve E, Pohorille A (2004) Assessing the efficiency of free energy calculation methods. J Chem Phys 120(8):3563–3578

    Article  PubMed  CAS  Google Scholar 

  33. Rosso L et al (2002) On the use of the adiabatic molecular dynamics technique in the calculation of free energy profiles. J Chem Phys 116(11):4389–4402

    Article  CAS  Google Scholar 

  34. Wu D, Kofke DA (2004) Model for small-sample bias of free-energy calculations applied to Gaussian-distributed nonequilibrium work measurements. J Chem Phys 121(18):8742–8747

    Article  PubMed  CAS  Google Scholar 

  35. Wu D, Kofke DA (2004) Asymmetric bias in free-energy perturbation measurements using two Hamiltonian-based models. Phys Rev E 70(6):066702-1–066702-11

    Article  CAS  Google Scholar 

  36. Zuckerman DM, Woolf TB (2002) Overcoming finite-sampling errors in fast-switching free-energy estimates: extrapolative analysis of a molecular system. Chem Phys Lett 351(5–6):445–453

    Article  CAS  Google Scholar 

  37. Zuckerman DM, Woolf TB (2002) Theory of a systematic computational error in free energy differences. Phys Rev Lett 89(18):180602

    Article  PubMed  CAS  Google Scholar 

  38. Zuckerman DM, Woolf TB (2004) Systematic finite-sampling inaccuracy in free energy differences and other nonlinear quantities. J Stat Phys 114(5–6):1303–1323

    Article  Google Scholar 

  39. Isralewitz B et al (2001) Steered molecular dynamics investigations of protein function. J Mol Graph Model 19(1):13–25

    Article  PubMed  CAS  Google Scholar 

  40. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11(2):224–230

    Article  PubMed  CAS  Google Scholar 

  41. Bustamante C et al (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    Article  PubMed  CAS  Google Scholar 

  42. Wang GM et al (2002) Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys Rev Lett 89(5):050601

    Article  PubMed  CAS  Google Scholar 

  43. Amaro R, Luthey-Schulten Z (2004) Molecular dynamics simulations of substrate channeling through an alpha-beta barrel protein. Chem Phys 307(2–3):147–155

    Article  CAS  Google Scholar 

  44. Cascella M et al (2002) Multiple steering molecular dynamics applied to water exchange at alkali ions. J Phys Chem B 106(50):13027–13032

    Article  CAS  Google Scholar 

  45. Cascella M, Raugei S, Carloni P (2004) Formamide hydrolysis investigated by multiple-steering ab initio molecular dynamics. J Phys Chem B 108(1):369–375

    Article  CAS  Google Scholar 

  46. Hummer G (2002) Fast-growth thermodynamic integration: results for sodium ion hydration. Mol Simul 28(1–2):81–90

    Article  CAS  Google Scholar 

  47. Li PC, Makarov DE (2003) Theoretical studies of the mechanical unfolding of the muscle protein titin: bridging the time-scale gap between simulation and experiment. J Chem Phys 119(17):9260–9268

    Article  CAS  Google Scholar 

  48. Raugei S, Cascella M, Carloni P (2004) A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. J Am Chem Soc 126(48):15730–15737

    PubMed  CAS  Google Scholar 

  49. Vidossich P, Cascella M, Carloni P (2004) Dynamics and energetics of water permeation through the aquaporin channel. Proteins-Struct Funct Bioinformatics 55(4):924–931

    Article  CAS  Google Scholar 

  50. Zwanzig RW (1954) High-temperature equation of state by a perturbation method. 1: nonpolar gases. J Chem Phys 22(8):1420–1426

    Article  CAS  Google Scholar 

  51. Liu HY, Mark AE, vanGunsteren WF (1996) Estimating the relative free energy of different molecular states with respect to a single reference state. J Phys Chem 100(22):9485–9494

    Article  CAS  Google Scholar 

  52. Oostenbrink C, van Gunsteren WF (2004) Free energies of binding of polychlorinated biphenyls to the estrogen receptor from a single simulation. Proteins-Struct Funct Genet 54(2):237–246

    Article  PubMed  CAS  Google Scholar 

  53. Okamoto Y (2004) Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol Graph Model 22(5):425–439

    Article  PubMed  CAS  Google Scholar 

  54. Ponder J (2004) Tinker program. Available at http://dasher.wustl. edu/tinker/

  55. Crespo A et al (2005) Multiple–steering QM-MM calculation of the free energy profile in chorismate mutase. J Am Chem Soc 127(19):6940–6941

    Article  PubMed  CAS  Google Scholar 

  56. Crespo A et al (2003) A DFT-based QM–MM approach designed for the treatment of large molecular systems: application to chorismate mutase. J Phys Chem B 107(49):13728–13736

    Article  CAS  Google Scholar 

  57. Lee YS et al (2002) Reaction mechanism of chorismate mutase studied by the combined potentials of quantum mechanics and molecular mechanics. J Phys Chem B 106(46):12059–12065

    Article  CAS  Google Scholar 

  58. Kast P et al (1997) Thermodynamics of the conversion of chorismate to prephenate: experimental results and theoretical predictions. J Phys Chem B 101(50):10976–10982

    Article  CAS  Google Scholar 

  59. Woodcock HL et al (2003) Exploring the quantum mechanical/molecular mechanical replica path method: a pathway optimization of the chorismate to prephenate Claisen rearrangement catalyzed by chorismate mutase. Theor Chem Acc 109(3):140–148

    CAS  Google Scholar 

  60. Worthington SE, Roitberg AE, Krauss M (2001) An MD/QM study of the chorismate mutase-catalyzed Claisen rearrangement reaction. J Phys Chem B 105(29):7087–7095

    Article  CAS  Google Scholar 

  61. Guimaraes CRW et al (2003) Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase. J Am Chem Soc 125(23):6892–6899

    Article  PubMed  CAS  Google Scholar 

  62. Marti S et al (2001) A hybrid potential reaction path and free energy study of the chorismate mutase reaction. J Am Chem Soc 123(8):1709–1712

    Article  PubMed  CAS  Google Scholar 

  63. Soler JM et al (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745–2779

    Article  CAS  Google Scholar 

  64. Chook YM et al (1994) The Monofunctional chorismate mutase from Bacillus-subtilis - structure determination of chorismate mutase and its complexes with a transition-state analog and prephenate, and implications for the mechanism of the enzymatic-reaction. J Mol Biol 240(5):476–500

    Article  PubMed  CAS  Google Scholar 

  65. Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J Comput Chem 21(12):1049–1074

    Article  CAS  Google Scholar 

  66. Torrie GM, Valleau JP (1977) Non-physical sampling distributions in Monte-Carlo free-energy estimation – umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  67. MacMicking JD et al (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Nat Acad Sci USA 94(10):5243–5248

    Article  PubMed  CAS  Google Scholar 

  68. Couture M et al (1999) A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc Nat Acad Sci USA 96(20):11223–11228

    Article  PubMed  CAS  Google Scholar 

  69. Milani M et al (2005) Structural bases for heme binding and diatomic ligand recognition in truncated hemoglobins. J Inorg Biochem 99(1):97–109

    Article  PubMed  CAS  Google Scholar 

  70. Crespo A et al (2005) Theoretical study of the truncated hemoglobin HbN: exploring the molecular basis of the NO detoxification mechanism. J Am Chem Soc 127(12):4433–4444

    Article  PubMed  CAS  Google Scholar 

  71. Milani M et al (2004) Cyanide binding to truncated hemoglobins: A crystallographic and kinetic study. Biochemistry 43(18):5213–5221

    Article  PubMed  CAS  Google Scholar 

  72. Milani M et al (2004) Heme-ligand tunneling in group I truncated hemoglobins. J Biol Chem 279(20):21520–21525

    Article  PubMed  CAS  Google Scholar 

  73. Samuni U et al (2003) Kinetic modulation in carbonmonoxy derivatives of truncated hemoglobins – the role of distal heme pocket residues and extended apolar tunnel. J Biol Chem 278(29):27241–27250

    Article  PubMed  CAS  Google Scholar 

  74. Dantsker D et al (2004) Viscosity-dependent relaxation significantly modulates the kinetics of CO recombination in the truncated hemoglobin TrHbN from Mycobacterium tuberculosis. J Biol Chem 279(37):38844–38853

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian E. Roitberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, H., Crespo, A., Marti, M. et al. Free Energy Calculations with Non-Equilibrium Methods: Applications of the Jarzynski Relationship. Theor Chem Acc 116, 338–346 (2006). https://doi.org/10.1007/s00214-005-0072-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-005-0072-2

Keywords

Navigation