Skip to main content

Advertisement

Log in

7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Intracerebroventricular (ICV) streptozotocin (STZ) mimics sporadic Alzheimer’s disease (SAD) characterized by tau pathology and neurodegeneration arising from oxidative stress, mitochondrial dysfunction, and insulin resistance. 7,8-Dihydroxyflavone (7,8-DHF) is a flavonoid having antioxidant property interlinked with mitochondrial functioning and insulin actions.

Objectives

To evaluate the neuroprotective and cognitive enhancement properties of 7,8-DHF in an ICV-STZ rat model of SAD.

Methods

ICV-STZ (3 mg/kg) was injected into male Wistar rats. Cognitive functions were evaluated by Morris water maze (MWM) and novel object recognition (NOR). 7,8-DHF (5 mg/kg, 10 mg/kg, and 20 mg/kg) and rivastigmine (2 mg/kg) were given orally for 21 days. Reduced glutathione (GSH), catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX), lipid peroxidation (LPO), protein carbonylation (PCO), and nitrite assays were performed. Mitochondrial enzyme complex I, II, III, and IV, and acetylcholinesterase (AchE) activities were determined. ELISA for the insulin-degrading enzyme (IDE) and p-tau was done. Histopathology was investigated by hematoxylin and eosin staining.

Results

7,8-DHF treatment attenuated ICV-STZ-induced cognitive deficit in MWM and NOR. Moreover, in the cortex and hippocampus regions of the brain, GSH, catalase, SOD, GPX, LPO, PCO, and nitrite levels were reversed. Mitochondrial enzyme complex I, II, III, and IV, and acetylcholinesterase (AchE) activities were also normalized. IDE and p-tau protein were found to be significantly altered. 7,8-DHF provided protection from neuronal cell death examined in histopathology.

Conclusions

Conclusively, 7,8-DHF was found to be neuroprotective in the ICV-STZ rat model by ameliorating oxidative stress, mitochondrial dysfunction, and insulin resistance, thereby improving cognitive functions evident with the behavioral results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56:779–787

    CAS  PubMed  Google Scholar 

  • Ahmed S, Kwatra M, Gawali B, Panda SR, Naidu V (2020) Potential role of TrkB agonist in neuronal survival by promoting CREB/BDNF and PI3K/Akt signaling in vitro and in vivo model of 3-nitropropionic acid (3-NP)-induced neuronal death Apoptosis:1-19

  • Akhtar A, Bishnoi M, Sah SP (2020a) Sodium orthovanadate improves learning and memory in intracerebroventricular-streptozotocin rat model of Alzheimer’s disease through modulation of brain insulin resistance induced tau pathology. Brain Res Bull 164:83–97

    CAS  PubMed  Google Scholar 

  • Akhtar A, Dhaliwal J, Saroj P, Uniyal A, Bishnoi M, Sah SP (2020b) Chromium picolinate attenuates cognitive deficit in ICV-STZ rat paradigm of sporadic Alzheimer’s-like dementia via targeting neuroinflammatory and IRS-1/PI3K/AKT/GSK-3β pathway. Inflammopharmacology 28:385–400

    CAS  PubMed  Google Scholar 

  • Barnes DE, Yaffe K (2011) The projected effect of risk factor reduction on Alzheimer’s disease prevalence. The Lancet Neurology 10:819–828

    PubMed  PubMed Central  Google Scholar 

  • Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137

    CAS  PubMed  Google Scholar 

  • Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482

    CAS  PubMed  Google Scholar 

  • Biessels G, Kappelle L (2005) Increased risk of Alzheimer’s disease in type II diabetes: insulin resistance of the brain or insulin-induced amyloid pathology? Portland Press Ltd. Biochem Soc Trans 33(5):1041–1045

    CAS  PubMed  Google Scholar 

  • Bokare AM, Bhonde M, Goel R, Nayak Y (2018) 5-HT6 receptor agonist and antagonist modulates ICV-STZ-induced memory impairment in rats. Psychopharmacology 235:1557–1570

    CAS  PubMed  Google Scholar 

  • Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch H, Prickaerts J (2013) 7, 8-Dihydroxyflavone improves memory consolidation processes in rats and mice. Behav Brain Res 257:8–12

    CAS  PubMed  Google Scholar 

  • Bolzán AD, Bianchi MS (2002) Genotoxicity of streptozotocin. Mutation Research/Reviews in Mutation Research 512:121–134

    Google Scholar 

  • Bomba M, Granzotto A, Castelli V, Massetti N, Silvestri E, Canzoniero LMT, Cimini A, Sensi SL (2018) Exenatide exerts cognitive effects by modulating the BDNF-TrkB neurotrophic axis in adult mice. Neurobiol Aging 64:33–43

    CAS  PubMed  Google Scholar 

  • Chan CB et al (2015) Activation of muscular TrkB by its small molecular agonist 7, 8-dihydroxyflavone sex-dependently regulates energy metabolism in diet-induced obese mice. Chem Biol 22:355–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang H-A, Wang Y-H, Tung C-S, Yeh C-B, Liu Y-P (2016) 7, 8-Dihydroxyflavone, a tropomyosin-kinase related receptor B agonist, produces fast-onset antidepressant-like effects in rats exposed to chronic mild stress. Psychiatry Investig 13:531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Wang Z, Zhang Z, Liu X, Kang SS, Zhang Y, Ye K (2018) The prodrug of 7, 8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease Proc Natl Acad Sci 115 578-583

  • Chiu M-J, Chen T-F, Yip P-K, Hua M-S, Tang L-Y (2006) Behavioral and psychologic symptoms in different types of dementia. J Formos Med Assoc 105:556–562

    PubMed  Google Scholar 

  • Claiborne A (1985) Handbook of methods for oxygen radical research Florida: CRC Press, Boca Raton 283-284

  • Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS (2006) Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55:3320–3325

    CAS  PubMed  Google Scholar 

  • Colombo G, Clerici M, Garavaglia ME, Giustarini D, Rossi R, Milzani A, Dalle-Donne I (2016) A step-by-step protocol for assaying protein carbonylation in biological samples. J Chromatogr B 1019:178–190

    CAS  Google Scholar 

  • Davidson TL, Jarrard LE (1993) A role for hippocampus in the utilization of hunger signals. Behav Neural Biol 59:167–171

    CAS  PubMed  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong C-X (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am J Pathol 175:2089–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devi L, Ohno M (2012) 7, 8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 37:434–444

    CAS  PubMed  Google Scholar 

  • El Halawany AM, Sayed NSE, Abdallah HM, El Dine RS (2017) Protective effects of gingerol on streptozotocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of β-amyloid, COX-2, alpha-, beta-secretases and APH1a. Sci Rep 7:2092. https://doi.org/10.1038/s41598-017-02961-0

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr (1961) Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity Biochemical pharmacology 7:88–95

    CAS  PubMed  Google Scholar 

  • Farris W et al (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci 100:4162–4167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freude S, Plum L, Schnitker J, Leeser U, Udelhoven M, Krone W, Bruning JC, Schubert M (2005) Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes 54:3343–3348

    CAS  PubMed  Google Scholar 

  • Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, Tian Q, Wu QM, Hu XM, Sun LB, McClintock SM, Zeng Y (2016) TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 136:620–636

    CAS  PubMed  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  PubMed  Google Scholar 

  • Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101:757–770

    PubMed  Google Scholar 

  • Guo Z et al (2017) Long-term treatment with intranasal insulin ameliorates cognitive impairment, tau hyperphosphorylation, and microglial activation in a streptozotocin-induced Alzheimer’s rat model. Sci Rep 7:45971. https://doi.org/10.1038/srep45971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Zhu S, Wang B, Chen L, Li R, Yao W, Qu Z (2014) Antioxidant action of 7, 8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity. Neurochem Int 64:18–23

    CAS  PubMed  Google Scholar 

  • Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F (2006) Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res 171:9–16

    CAS  PubMed  Google Scholar 

  • Jiménez-Maldonado A et al (2014) Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. PLoS One 9:e115177

    PubMed  PubMed Central  Google Scholar 

  • Kamat PK, Kalani A, Rai S, Tota SK, Kumar A, Ahmad AS (2016) Streptozotocin intracerebroventricular-induced neurotoxicity and brain insulin resistance: a therapeutic intervention for treatment of sporadic Alzheimer’s disease (sAD)-like pathology. Mol Neurobiol 53:4548–4562

    CAS  PubMed  Google Scholar 

  • King TE (1967) [58] Preparation of succinate dehydrogenase and reconstitution of succinate oxidase. In: Methods in enzymology 10:322–331

    CAS  Google Scholar 

  • King TE, Howard RL (1967) [52] Preparations and properties of soluble NADH dehydrogenases from cardiac muscle. In: Methods in enzymology 10:275–294

    CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    CAS  PubMed  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    CAS  PubMed  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    CAS  PubMed  Google Scholar 

  • Liu P, Zou L-B, Wang L-H, Jiao Q, Chi T-Y, Ji X-F, Jin G (2014) Xanthoceraside attenuates tau hyperphosphorylation and cognitive deficits in intracerebroventricular-streptozotocin injected rats. Psychopharmacology 231:345–356

    CAS  PubMed  Google Scholar 

  • Malito E, Ralat LA, Manolopoulou M, Tsay JL, Wadlington NL, Tang W-J (2008) Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry 47:12822–12834

    CAS  PubMed  Google Scholar 

  • Mohankumar T, Lalithamba HS, Manigandan K, Arunachalam M, Elangovan N (2020) DHF-BAHPC molecule exerts ameliorative antioxidant status and reduced cadmium-induced toxicity in zebrafish (Danio rerio) embryos. Environ Toxicol Pharmacol 79:103425

    CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  PubMed  Google Scholar 

  • Nam Y, Shin EJ, Shin SW, Lim YK, Jung JH, Lee JH, Ha JR, Chae JS, Ko SK, Jeong JH, Jang CG, Kim HC (2014) YY162 prevents ADHD-like behavioral side effects and cytotoxicity induced by Aroclor1254 via interactive signaling between antioxidant potential, BDNF/TrkB, DAT and NET. Food Chem Toxicol 65:280–292

    CAS  PubMed  Google Scholar 

  • Nie S et al. (2019) 7, 8-Dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents Parkinson’s disease 2019 9193534

  • Pandey SN, Kwatra M, Dwivedi DK, Choubey P, Lahkar M, Jangra A (2020) 7, 8-Dihydroxyflavone alleviated the high-fat diet and alcohol-induced memory impairment: behavioral, biochemical and molecular evidence Psychopharmacology 237:1827-1840

  • Pathan AR, Viswanad B, Sonkusare SK, Ramarao P (2006) Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci 79:2209–2216

    CAS  PubMed  Google Scholar 

  • Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120:185–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prince CS, Maloyan A, Myatt L (2018) Tropomyosin receptor kinase B agonist, 7, 8-dihydroxyflavone, improves mitochondrial respiration in Placentas. Obese Women Reproductive Sciences 25:452–462

    CAS  PubMed  Google Scholar 

  • Qi D, Ouyang C, Wang Y, Zhang S, Ma X, Song YJ, Yu HL, Tang J, Fu W, Sheng L, Yang L, Wang M, Zhang W, Miao L, Li T, Huang X, Dong H (2014) HO-1 attenuates hippocampal neurons injury via the activation of BDNF–TrkB–PI3K/Akt signaling pathway in stroke. Brain Res 1577:69–76

    CAS  PubMed  Google Scholar 

  • Sachdeva AK, Kuhad A, Chopra K (2014) Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav 127:101–110

    CAS  PubMed  Google Scholar 

  • Shin M-K et al (2014) Neuropep-1 ameliorates learning and memory deficits in an Alzheimer’s disease mouse model, increases brain-derived neurotrophic factor expression in the brain, and causes reduction of amyloid beta plaques. Neurobiol Aging 35:990–1001

    CAS  PubMed  Google Scholar 

  • Shinall H, Song ES, Hersh LB (2005) Susceptibility of amyloid β peptide degrading enzymes to oxidative damage: a potential Alzheimer’s disease spiral. Biochemistry 44:15345–15350

    CAS  PubMed  Google Scholar 

  • Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria: a biochemical and morphological study. J Cell Biol 32:415–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surin A et al. (2017) Disruption of functional activity of mitochondria during MTT assay of viability of cultured neurons Biochemistry (Moscow) 82:737-749

  • Tiwari V, Kuhad A, Bishnoi M, Chopra K (2009) Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative–nitrosative stress in rats. Pharmacol Biochem Behav 93:183–189

    CAS  PubMed  Google Scholar 

  • Tuzcu M, Baydas G (2006) Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. European Journal of Pharmacology 537:106–110

    CAS  PubMed  Google Scholar 

  • Vauzour D, Vafeiadou K, Rodriguez-Mateos A, Rendeiro C, Spencer JP (2008) The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 3:115–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Liu L, Li S, Wang C (2018) Effects of paeoniflorin on neurobehavior, oxidative stress, brain insulin signaling, and synaptic alterations in intracerebroventricular streptozotocin-induced cognitive impairment in mice. Physiol Behav 191:12–20

    CAS  PubMed  Google Scholar 

  • Wiedemann FR, Siemen D, Mawrin C, Horn TF, Dietzmann K (2006) The neurotrophin receptor TrkB is colocalized to mitochondrial membranes. Int J Biochem Cell Biol 38:610–620

    CAS  PubMed  Google Scholar 

  • Wills E (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-H, Hung T-H, Chen C-C, Ke C-H, Lee C-Y, Wang P-Y, Chen S-F (2014) Post-injury treatment with 7, 8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS One 9:e113397

    PubMed  PubMed Central  Google Scholar 

  • Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H (2014) Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 35:741–751

    PubMed  Google Scholar 

  • Yang B, Luo G, Zhang C, Feng L, Luo X, Gan L (2020) Curcumin protects rat hippocampal neurons against pseudorabies virus by regulating the BDNF/TrkB pathway. Sci Rep 10:1–10

    Google Scholar 

  • Yoo J-M, Lee BD, Sok D-E, Ma JY, Kim MR (2017) Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells. Redox Biol 11:592–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J et al (2019) Activation of cardiac TrkB receptor by its small molecular agonist 7, 8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radic Biol Med 130:557–567

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank and acknowledge UIPS, Panjab University, and University Grants Commission (UGC), New Delhi-India for providing the opportunity and grant for the research work. The letter-number for the fellowship grant is F1-17.1/2015-16/MANF-2015-17-BIH-72699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta Pilkhwal Sah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• ICV-STZ caused cognitive impairment in rat resembling sporadic Alzheimer’s disease.

• ICV-STZ-induced cognitive impairment was revealed in MWM and NOR.

• Oxidative stress, mitochondrial dysfunction, and insulin resistance were reported.

• 7,8-DHF reversed oxidative stress, mitochondrial dysfunction, and insulin resistance.

• 7,8-DHF halted tau pathology and neurodegeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, A., Dhaliwal, J. & Sah, S.P. 7,8-Dihydroxyflavone improves cognitive functions in ICV-STZ rat model of sporadic Alzheimer’s disease by reversing oxidative stress, mitochondrial dysfunction, and insulin resistance. Psychopharmacology 238, 1991–2009 (2021). https://doi.org/10.1007/s00213-021-05826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-021-05826-7

Keywords

Navigation