Skip to main content

Advertisement

Log in

Protective effect of potassium 2-(l-hydroxypentyl)-benzoate on hippocampal neurons, synapses and dystrophic axons in APP/PS1 mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

As the hub of memory and space, hippocampus is very sensitive to a wide variety of injuries and is one of the earliest brain structures to develop neurodegenerative changes in AD. Previous research has showed a protective effect of potassium 2-(l-hydroxypentyl)-benzoate (PHPB) on cognitive deficits in animal models of AD. However, it is unclear whether this protective effect is associated with hippocampal alterations.

Objectives

The present study was conducted to evaluate the protective effect of PHPB on hippocampal neurodegenerative changes in middle-aged APP/PS1 mice.

Methods

Ten-month-old male APP/PS1 transgenic mice and age-matched wild-type mice were randomly divided into three groups. PHPB-treated APP/PS1 group received 30 mg/kg PHPB by oral gavage once daily for 12 weeks. Wild-type group and APP/PS1 group received the same volume of water alone. Twelve weeks later, mice (13-month-old) were tested for in vivo 1H-MRS examination and then sacrificed for subsequent biochemical and pathological examinations using transmission electron microscopy, Golgi staining, immunohistochemistry, and western blotting.

Results

We found that PHPB treatment significantly improved the micromorphology of hippocampal neurons and subcellular organelles, ameliorated synapse loss and presynaptic axonal dystrophy, increased hippocampal dendritic spine density and dendritic complexity, enhanced the expression of hippocampal synapse-associated proteins, and improved hippocampal metabolism in middle-aged APP/PS1 mice.

Conclusions

Our study showed for the first time the protective effect of PHPB on hippocampal neurons, synapses, and dystrophic axons in APP/PS1 mice, which to some extent revealed the possible mechanism for its ability to improve cognition in animal models of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alpar A, Ueberham U, Bruckner MK, Seeger G, Arendt T, Gartner U (2006) Different dendrite and dendritic spine alterations in basal and apical arbors in mutant human amyloid precursor protein transgenic mice. Brain Res 1099:189–198

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  CAS  PubMed  Google Scholar 

  • Antequera D, Bolos M, Spuch C, Pascual C, Ferrer I, Fernandez-Bachiller MI, Rodríguez-Franco MI, Carro E (2012) Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Abeta accumulation and cell death: involvement in hippocampal neuronal loss in Alzheimer's disease. Neurobiol Dis 46:682–691

    Article  CAS  PubMed  Google Scholar 

  • Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  PubMed  Google Scholar 

  • Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol 25:821–828

    Article  CAS  PubMed  Google Scholar 

  • Coggeshall RE, Lekan HA (1996) Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J Comp Neurol 364:6–15

    Article  CAS  PubMed  Google Scholar 

  • Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38:1682–1687

    Article  CAS  PubMed  Google Scholar 

  • Dayan AD (1970) Quantitative histological studies on the aged human brain. I. Senile plaques and neurofibrillary tangles in “normal” patients. Acta Neuropathol 16:85–94

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt E, Moreira DM, Laks J, Marinho VM, Rozenthal M, Oliveira AC Jr (2001) Alzheimer’s disease and magnetic resonance spectroscopy of the hippocampus. Arq Neuropsiquiatr 59:865–870

    Article  CAS  PubMed  Google Scholar 

  • Franko E, Joly O (2013) Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy. PLoS One 8:e71354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori N, Abe K, Sakoda S, Sawada T (2002) Proton MR spectroscopic study at 3 Tesla on glutamate/glutamine in Alzheimer’s disease. Neuroreport 13:183–186

    Article  CAS  PubMed  Google Scholar 

  • Henriksen O (1995) In vivo quantitation of metabolite concentrations in the brain by means of proton MRS. NMR Biomed 8:139–148

    Article  CAS  PubMed  Google Scholar 

  • Herminghaus S, Frölich L, Gorriz C, Pilatus U, Dierks T, Wittsack HJ, Lanfermann H, Maurer K, Zanella FE (2003) Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123:183–190

    Article  CAS  PubMed  Google Scholar 

  • Hu WY, He ZY, Yang LJ, Zhang M, Xing D, Xiao ZC (2015) The Ca(2+) channel inhibitor 2-APB reverses beta-amyloid-induced LTP deficit in hippocampus by blocking BAX and caspase-3 hyperactivation. Br J Pharmacol 172:2273–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr et al (2000) Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55:484–489

    Article  PubMed  Google Scholar 

  • Jack CR Jr et al (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62:591–600

    Article  PubMed  Google Scholar 

  • Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR (2001) Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng 17:157–165

    Article  CAS  PubMed  Google Scholar 

  • Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer’s disease and vascular dementia. Neurol Res 26:488–495

    Article  CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MB (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci 20:264–268

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Sheng M (2009) The postsynaptic density. Curr Biol 19:R723–R724

    Article  CAS  PubMed  Google Scholar 

  • Kowall NW, Beal MF, Busciglio J, Duffy LK, Yankner BA (1991) An in vivo model for the neurodegenerative effects of beta amyloid and protection by substance P. Proc Natl Acad Sci U S A 88:7247–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li PP, Wang WP, Liu ZH, Xu SF, Lu WW, Wang L, Wang XL (2014) Potassium 2-(1-hydroxypentyl)-benzoate promotes long-term potentiation in Abeta1-42-injected rats and APP/PS1 transgenic mice. Acta Pharmacol Sin 35:869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer's disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102:11906–11910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120:4081–4091

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    Article  PubMed  Google Scholar 

  • Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, Sunnemark D, Norinder U, Klason T, Wahlund LO, Lindberg M (2008) Age related changes in brain metabolites observed by 1H MRS in APP/PS1 mice. Neurobiol Aging 29:1423–1433

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Xu S, Chen G, Wang L, Feng Y, Wang X (2007) L-3-n-butylphthalide improves cognitive impairment induced by chronic cerebral hypoperfusion in rats. J Pharmacol Exp Ther 321:902–910

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Xing C, Lemere CA, Chen G, Wang L, Feng Y, Wang X (2008) L-3-n-butylphthalide ameliorates beta-amyloid-induced neuronal toxicity in cultured neuronal cells. Neurosci Lett 434:224–229

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Sun J, Hon S, Nylander AN, Xia W, Feng Y, Wang X, Lemere CA (2010) L-3-n-butylphthalide improves cognitive impairment and reduces amyloid-beta in a transgenic model of Alzheimer’s disease. J Neurosci 30:8180–8189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Hu Y, Xu S, Li P, Li J, Lu L, Yang H, Feng N, Wang L, Wang X (2012) L-3-n-butylphthalide reduces tau phosphorylation and improves cognitive deficits in AbetaPP/PS1-Alzheimer's transgenic mice. J Alzheimers Dis 29:379–391

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Hu Y, Xu S, Rong X, Li J, Li P, Wang L, Yang J, Wang X (2014) Potassium 2-(1-hydroxypentyl)-benzoate improves memory deficits and attenuates amyloid and tau pathologies in a mouse model of Alzheimer's disease. J Pharmacol Exp Ther 350:361–374

    Article  CAS  PubMed  Google Scholar 

  • Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, Doddrell DM (1999) A 1H MRS study of probable Alzheimer’s disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 17:291–299

    Article  CAS  PubMed  Google Scholar 

  • Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046

    Article  CAS  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  • Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spires-Jones T, Knafo S (2012) Spines, plasticity, and cognition in Alzheimer’s model mice. Neural Plast 2012:319836

    Article  PubMed  Google Scholar 

  • Sun XC, Li L, Zhang M, Li WB, Li QJ, Zhao L (2012) Division of CA1, CA3 and DG regions of the hippocampus of Wistar rat. Zhongguo Ying Yong Sheng Li Xue Za Zhi 28:189–192

    PubMed  Google Scholar 

  • Ten Kate M et al (2017) Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 52:167–182 e161

    Article  PubMed  Google Scholar 

  • Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer's disease. Mol Neurodegener 9:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unger MS, Marschallinger J, Kaindl J, Höfling C, Rossner S, Heneka MT, van der Linden A, Aigner L (2016) Early changes in hippocampal neurogenesis in transgenic mouse models for Alzheimer’s disease. Mol Neurobiol 53:5796–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tan L, Wang HF, Liu Y, Yin RH, Wang WY, Chang XL, Jiang T, Yu JT (2015) Magnetic resonance spectroscopy in Alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis 46:1049–1070

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang L, Li J, Wang XL (2006) 2-(1-Hydroxypentyl)-benzoate increases cerebral blood flow and reduces infarct volume in rats model of transient focal cerebral ischemia. J Pharmacol Exp Ther 317:973–979

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Xu S, Peng Y, Ji X, Cao D, Li J, Liu B, Shi Q, Wang L, Wang X (2013) Potassium 2-(1-hydroxypentyl)-benzoate improves learning and memory deficits in chronic cerebral hypoperfused rats. Neurosci Lett 541:155–160

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by the grants from National Natural Sciences Foundation of China (No.81473200 and 81673420), CAMS Innovation Fund for Medical Sciences (No.2017-I2M-2-004), and the National Science and Technology Major Special Project on Major New Drug Innovation of China (2018ZX09711001-003-005, 2018ZX09711001-003-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoliang Wang or Ying Peng.

Ethics declarations

All experiments were approved and performed in accordance with the institutional guidelines of the Experimental Animal Center of the Chinese Academy of Medical Science, Beijing, China (No.00005668).

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhang, Y., Peng, Y. et al. Protective effect of potassium 2-(l-hydroxypentyl)-benzoate on hippocampal neurons, synapses and dystrophic axons in APP/PS1 mice. Psychopharmacology 236, 2761–2771 (2019). https://doi.org/10.1007/s00213-019-05251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-019-05251-x

Keywords

Navigation