Skip to main content
Log in

Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

(R,S)-Ketamine produces rapid, robust, and sustained antidepressant effects in major depressive disorder. Specifically, its pharmacological efficacy in treatment refractory depression is considered a major breakthrough in the field. However, the mechanism of action of ketamine’s rapid effect remains to be determined. In order to identify pathways that are responsible for ketamine’s effect, a targeted metabolomic approach was carried out using a double-blind, placebo-controlled crossover design, with infusion order randomized with medication-free patients with treatment-resistant major depressive disorder (29 subjects) and healthy controls (25 subjects). The metabolomic profile of these subjects was characterized at multiple time points, and a comprehensive analysis was investigated between the following: MDD and healthy controls, treatment and placebo in both groups and the corresponding response to ketamine treatment. Ketamine treatment resulted in a general increase in circulating sphingomyelins, levels which were not correlated with response. Ketamine response resulted in more pronounced effects in the kynurenine pathway and the arginine pathway at 4 h post-infusion, where a larger decrease in circulating kynurenine levels and a larger increase in the bioavailability of arginine were observed in responders to ketamine treatment, suggesting possible mechanisms for response to ketamine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Ali-Sisto T, Tolmunen T, Viinamaki H, Mantyselka P, Valkonen-Korhonen M, Koivumaa-Honkanen H, Honkalampi K, Ruusunen A, Nandania J, Velagapudi V, Lehto SM (2018) Global arginine bioavailability ratio is decreased in patients with major depressive disorder. J Affect Disord 229:145–151

    Article  CAS  PubMed  Google Scholar 

  • Allen AP, Naughton M, Dowling J, Walsh A, O'Shea R, Shorten G, Scott L, McLoughlin DM, Cryan JF, Clarke G, Dinan TG (2018) Kynurenine pathway metabolism and the neurobiology of treatment-resistant depression: comparison of multiple ketamine infusions and electroconvulsive therapy. J Psychiatr Res 100:24–32

    Article  CAS  PubMed  Google Scholar 

  • Anderson G, Maes M (2014) Reconceptualizing adult neurogenesis: role for sphingosine-1-phosphate and fibroblast growth factor-1 in co-ordinating astrocyte-neuronal precursor interactions. CNS Neurol Disord Drug Targets 13(1):126–136

    Article  CAS  PubMed  Google Scholar 

  • Baranyi A, Amouzadeh-Ghadikolai O, Rothenhausler HB, Theokas S, Robier C, Baranyi M, Koppitz M, Reicht G, Hlade P, Meinitzer A (2015) Nitric oxide-related biological pathways in patients with major depression. PLoS One 10(11):e0143397

    Article  PubMed Central  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354

    Article  CAS  PubMed  Google Scholar 

  • Bersani FS, Wolkowitz OM, Lindqvist D, Yehuda R, Flory J, Bierer LM, Makotine I, Abu-Amara D, Coy M, Reus VI, Epel ES, Marmar C, Mellon SH (2016) Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain Behav Immun 52:153–160

    Article  CAS  PubMed  Google Scholar 

  • Cervenka I, Agudelo LZ, Ruas JL (2017) Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science 357(6349):eaaf9794

    Article  PubMed  Google Scholar 

  • Chrapko W, Jurasz P, Radomski MW, Lara N, Archer SL, Le Melledo J-M (2004) Decreased platelet nitric oxide synthase activity and plasma nitric oxide metabolites in major depressive disorder. Biol Psych 56:129–134

    Article  CAS  Google Scholar 

  • Chrapko W, Jurasz P, Radomski MW, Archer SL, Newman SC, Baker G, Lara N, Le Melledo J-M (2006) Alteration of decreased plasma NO metabolites and platelet NO synthase activity by paroxetine in depressed patients. Neuropsychopharmacology 31(6):1286–1293

    Article  CAS  PubMed  Google Scholar 

  • Darlington LG, Forrest CM, Mackay GM, Smith RA, Smith AJ, Stoy N, Stone TW (2010) On the biological importance of the 3- hydroxyanthranilic acid: anthranilic acid ratio. Int J Tryptophan Res 3:51–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA Jr (2010a) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67(8):793–802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, Machado-Vieira R, Zarate CA Jr (2010b) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 71(12):1605–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dinoff A, Saleem M, Herrmann N, Mielke MM, Oh PI, Venkata SLV, Haughey NJ, Lanctot KL (2017) Plasma sphingolipids and depressive symptoms in coronary artery disease. Brain Behav 7(11):e00836

    Article  PubMed Central  PubMed  Google Scholar 

  • Dobos N, de Vries EF, Kema IP, Patas K, Prins M, Nijholt IM, Dierckx RA, Korf J, den Boer JA, Luiten PG, Eisel UL (2012) The role of indoleamine 2,3-dioxygenase in a mouse model of neuroinflammation-induced depression. J Alzheimers Dis 28(4):905–915

    Article  CAS  PubMed  Google Scholar 

  • Domin H, Szewczyk B, Woźniak M, Wawrzak-Wleciał ŚM (2014) Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression. Behav Brain Res 273:23–33

    Article  CAS  PubMed  Google Scholar 

  • First MB, Spitzer RL, Gibbon M, Williams AR (2001). Structured clinical interview for DSM-IV TR axis I disorders, research version, patient edition (SCID-I/P).

  • Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837 837a–837d

    Article  PubMed  Google Scholar 

  • Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8(5):617–633

    Article  CAS  PubMed  Google Scholar 

  • Gracia-Garcia P, Rao V, Haughey NJ, Bandaru VV, Smith G, Rosenberg PB, Lobo A, Lyketsos CG, Mielke MM (2011) Elevated plasma ceramides in depression. J Neuropsychiatry Clin Neurosci 23(2):215–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guldbrandt M, Johansen TN, Frydenvang K, Brauner-Osborne H, Stensbol TB, Nielsen B, Karla R, Santi F, Krogsgaard-Larsen P, Madsen U (2002) Glutamate receptor ligands: synthesis, stereochemistry, and enantiopharmacology of methylated 2-aminoadipic acid analogs. Chirality 14(4):351–363

    Article  CAS  PubMed  Google Scholar 

  • Harraz MM, Snyder SH (2017) Antidepressant actions of ketamine mediated by the mechanistic target of rapamycin, nitric oxide, and Rheb. Neurotherapeutics 14(3):728–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heisler JM, O'Connor JC (2015) Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism mediates inflammation-induced deficit in recognition memory. Brain Behav Immun 50:115–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hess S, Baker G, Gyenes G, Tsuyuki R, Newman S, Le Melledo JM (2017) Decreased serum L-arginine and L-citrulline levels in major depression. Psychopharmacology 234(21):3241–3247

    Article  CAS  PubMed  Google Scholar 

  • Iadarola ND, Niciu MJ, Richards EM, Vande Voort JL, Ballard ED, Lundin NB, Nugent AC, Machado-Vieira R, Zarate CA Jr (2015) Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis 6(3):97–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS, National Comorbidity Survey Replication (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105

    Article  PubMed  Google Scholar 

  • Kiecolt-Glaser J, Derry HM, Fagundes CP (2015) Inflammation: depression fans the flames and feasts on the heat. Am J Psych 172(11). https://doi.org/10.1176/appi.ajp.2015.15020152

    Article  PubMed  Google Scholar 

  • Kornhuber J, Medlin A, Bleich S, Jendrossek V, Henkel AW, Wiltfang J, Gulbins E (2005) High activity of acid sphingomyelinase in major depression. J Neural Transm 112(11):1583–1590

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    Article  CAS  PubMed  Google Scholar 

  • Lara N, Archer SL, Baker GB, Le Melledo J-M (2003) Paroxetine-induced increase in metabolic end products of nitric oxide. J Clin Psychopharm 23(6):641–645

    Article  CAS  Google Scholar 

  • Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R (2011) The new '5-HT' hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):702–721

    Article  CAS  Google Scholar 

  • Miller AH (2013) Conceptual confluence: the kynurenine pathway as a common target for ketamine and the convergence of the inflammation and glutamate hypotheses of depression. Neuropsychopharmacology 38(9):1607–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moaddel R, Fabbri E, Khadeer M, Carlson OD, Gonzalez-Freire M, Zhang P, Semba RD, Ferrucci L (2016) Plasma biomarkers of poor muscle quality in older men and women from the Baltimore longitudinal study of aging. J Gerontol Ser A 71(10):1266–1272

    Article  CAS  Google Scholar 

  • Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389

    Article  CAS  PubMed  Google Scholar 

  • Morgan CJ, Curran HV, Independent Scientific Committee on Drugs (2012) Ketamine use: a review. Addiction 107:27–38

    Article  PubMed  Google Scholar 

  • Morris SM (2006) Arginine: beyond protein. Am J Clin Nutr 83(2):508S–5512S

    Article  CAS  PubMed  Google Scholar 

  • Mühle C, Huttner HB, Walter S, Reichel M, Canneva F, Lewczuk P, Gulbins E, Kornhuber J (2013) Characterization of acid sphingomyelinase activity in human cerebrospinal fluid. Plos One. https://doi.org/10.1371/journal.pone.0062912

    Article  PubMed Central  PubMed  Google Scholar 

  • Nugent AC, Ballard ED, Gould TD, Park LT, Moaddel R, Brutsche NE, Zarate CA Jr (2018) Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Psychiatry, Mol

    Google Scholar 

  • Olin B, Jayewardene AK, Bunker M, Moreno F (2012) Mortality and suicide risk in treatment-resistant depression: an observational study of the long-term impact of intervention. PLoS One 7(10):e48002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Article  Google Scholar 

  • Oxenkrug G (2013) Serotonin-kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 14(5):514–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reus GZ, Jansen K, Titus S, Carvalho AF, Gabbay V, Quevedo J (2015) Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: evidences from animal and human studies. J Psychiatr Res 68:316–328

    Article  PubMed Central  PubMed  Google Scholar 

  • Rotroff DM, Corum DG, Motsinger-Reif A, Fiehn O, Bottrel N, Drevets WC, Singh J, Salvadore G, Kaddurah-Daouk R (2016) Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl Psychiatry 6(9):e894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163(11):1905–1917

    Article  PubMed  Google Scholar 

  • Sackeim HA (2001) The definition and meaning of treatment-resistant depression. J Clin Psychiatry 62(Suppl 16):10–17

    CAS  PubMed  Google Scholar 

  • Sanacora G, Heimer H, Hartman D, Mathew SJ, Frye M, Nemeroff C, Robinson Beale R (2017) Balancing the promise and risks of ketamine treatment for mood disorders. Neuropsychopharmacology 42(6):1179–1181

    Article  CAS  PubMed  Google Scholar 

  • Short B, Fong J, Galvez V, Shelker W, Loo CK (2018) Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry 5(1):65–78

    Article  PubMed  Google Scholar 

  • Steffens DC, Jiang W, Ranga K, Krishnan R, Karoly ED, Mitchell MW, O'Connor CM, Kaddurah-Daouk R (2010) Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol 23(2):138–146. https://doi.org/10.1177/0891988709358592

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorgdrager FJH, Doornbos B, Penninx BWJH, de Jonge P, Kema IP (2017) The association between the hypothalamic pituitary adrenal axis and tryptophan metabolism in persons with recurrent major depressive disorder and healthy controls. J Affect Disord 222:32–39

    Article  CAS  PubMed  Google Scholar 

  • Sourij H, Meinitzer A, Pilz S, Grammer TB, Winkelmann BR, Boehm BO, Marz W (2011) Arginine bioavailability ratios are associated with cardiovascular mortality in patients referred to coronary angiography. Atherosclerosis 218(1):220–225

    Article  CAS  PubMed  Google Scholar 

  • Sublette ME, Galfalvy HC, Fuchs D, Lapidus M, Grunebaum MF, Oquendo MA, Mann JJ, Postolache TT (2011) Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun 25(6):1272–1278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, Shores-Wilson K, Biggs MM, Balasubramani GK, Fava M, Team SDS (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40

    Article  PubMed  Google Scholar 

  • van Brocklyn JR, Williams JB (2012) The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 163(1):26–36

    Article  PubMed  Google Scholar 

  • Wegener G, Volke V (2010) Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals (Basel) 3(1):273–299

    Article  CAS  Google Scholar 

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P, Pribut HJ, Singh NS, Dossou KS, Fang Y, Huang XP, Mayo CL, Wainer IW, Albuquerque EX, Thompson SM, Thomas CJ, Zarate CA Jr, Gould TD (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zanos P, Thompson SM, Duman RS, Zarate CA Jr, Gould TD (2018) Convergent mechanisms underlying rapid antidepressant action. CNS Drugs 32(3):197–227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012a) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71(11):939–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zarate CA Jr, Brutsche N, Laje G, Luckenbaugh DA, Venkata SL, Ramamoorthy A, Moaddel R, Wainer IW (2012b) Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry 72(4):331–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman M, Posternak MA, Chelminski I (2004) Derivation of a definition of remission on the Montgomery-Asberg depression rating scale corresponding to the definition of remission on the Hamilton rating scale for depression. J Psychiatr Res 38(6):577–582

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Intramural research Program of the National Institutes of Health, National institute on Aging and National Institute on Mental Health and NCATS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruin Moaddel.

Ethics declarations

The study was approved by the Combined Neuroscience Institutional Review Board (IRB) at the National Institutes of Health (NIH). All subjects provided written informed consent before entry into the study. Informed consents and ongoing study participation for patients with MDD were monitored by the Human Subjects Protection Office at NIH (NCT00088699).

Conflict of interest

C.A.Z. is listed as a co-inventor on a patent application for the use of ketamine in major depression. R.M. and C.A.Z. are listed as co-inventors on a patent for the use of (2R,6R)-hydroxynorketamine, (S)-dehydronorketamine, and other stereoisomeric dehydro- and hydroxylated metabolites of (R,S)-ketamine metabolites in the treatment of depression and neuropathic pain. R.M., P.M., C.J.T., T.D.G., and C.A.Z are listed as co-inventors on a patent application for the use of (2R, 6R)-hydroxynorketamine and (2S, 6S)-hydroxynorketamine in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders. R.M., P.M., C.J.T., and C.A.Z have assigned their patent rights to the U.S. government but will share a percentage of any royalties that may be received by the government. T.D.G has assigned their patent rights to the University of Maryland Baltimore but will share a percentage of any royalties that may be received by the University of Maryland Baltimore.

Electronic supplementary material

ESM 1

(DOCX 814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moaddel, R., Shardell, M., Khadeer, M. et al. Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology 235, 3017–3030 (2018). https://doi.org/10.1007/s00213-018-4992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-4992-7

Keywords

Navigation