Skip to main content
Log in

Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Drug-associated cues exposure to induce extinction is a useful strategy to contrast cue-induced drug seeking. Treatments aimed at reducing motivational properties of cues are considered highly promising since they could decrease their ability to induce drug-conditioned behaviors. Norepinephrine (NE) in the medial prefrontal cortex (mPFC) is critical for attribution of motivational salience to highly salient stimuli, suggesting a major role in prelimbic (PL) mpFC to modulate the motivational properties of drug-related cues, invigorating them, and consequently, delaying extinction.

Objectives

To investigate if NE in PL fosters the maintenance of drug-seeking behavior, we assessed its role on amphetamine-induced conditioned place preference (CPP). Moreover, to affirm the specificity of NE in PL, we also assessed the role of NE in the infralimbic (IL) mPFC.

Methods

The effects of selective NE depletion in the PL or in the IL of C57BL/6J mice were assessed on the expression of amphetamine-induced CPP before and after extinction procedure.

Results

NE-depleted mice in PL extinguished preference for Amph-paired chamber long before sham animals. By contrast, IL-depleted animals maintained place preference for more than 4 weeks after the procedure of extinction, having at that moment interrupted the test.

Conclusions

Inactivation of NE in PL cortex blunts amphetamine-induced CPP, thus fostering extinction and showing to be critical for the maintenance of conditioned Amph-seeking behavior. Opposite effects of NE depletion in IL, seemingly in agreement with literature on extinction, are discussed in terms of balance of activity between PL and IL in extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auber A, Tedesco V, Jones CE, Monfils MH, Chiamulera C (2013) Post-retrieval extinction as reconsolidation interference: methodological issues or boundary conditions? Psychopharmacology 226:631–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berman DE, Hazvi S, Stehberg J, Bahar A, Dudai Y (2003) Conflicting processes in the extinction of conditioned taste aversion: behavioral and molecular aspects of latency, apparent stagnation, and spontaneous recovery. Learn Mem 10(1):16–25

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernardi RE, Lattal KM (2010) A role for alpha-adrenergic receptors in extinction of conditioned fear and cocaine conditioned place preference. Behav Neurosci 124(2):204–210. doi:10.1037/a0018909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, Gobeske KT, Sweatt JD, Manji HK, Arnsten AF (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306:882–884

    Article  CAS  PubMed  Google Scholar 

  • Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11:485–494

    Article  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra S, Genua C, Simon H, Le Moal M, Piazza PV (1996) Dose-dependent aversive and rewarding effects of amphetamine as revealed by a new place conditioning apparatus. Psychopharmacology (Berl) 125:92–96

    Article  CAS  Google Scholar 

  • Cabib S, Orsini C, Le Moal M, Piazza PV (2000) Abolition and reversal of strain differences in behavioral responses to drugs of abuse after a brief experience. Science 289:463–465

    Article  CAS  PubMed  Google Scholar 

  • Capriles N, Rodaros D, Sorge RE, Stewart J (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology 168:66–74

    Article  CAS  PubMed  Google Scholar 

  • Chen BT, Yau HJ, Hatch C, Kusumoto-Yoshida I, Cho SL, Hopf FW, Bonci A (2013) Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking. Nature 496:359–362

    Article  CAS  PubMed  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Darracq L, Blanc G, Glowinski J, Tassin JP (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of D-amphetamine. J Neurosci 18:2729–2739

    CAS  PubMed  Google Scholar 

  • Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Rev 36:129–138

    Article  CAS  PubMed  Google Scholar 

  • Fricks-Gleason AN, Marshall JF (2008) Post-retrieval beta-adrenergic receptor blockade: effects on extinction and reconsolidation of cocaine-cue memories. Learn Mem 15(9):643–648. doi:10.1101/lm.1054608

    Article  PubMed Central  PubMed  Google Scholar 

  • Gass JT, Chandler LJ (2013) The plasticity of extinction: contribution of the prefrontal cortex in treating addiction through inhibitory learning. Front Psychiatry 4:46. doi:10.3389/fpsyt.2013.00046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12:652–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutton-Bedbrook K, McNally GP (2013) The promises and pitfalls of retrieval-extinction procedures in preventing relapse to drug seeking. Front Psychiatry 4:14. doi:10.3389/fpsyt.2013.00014

    Article  PubMed Central  PubMed  Google Scholar 

  • Jasinska AJ, Chen BT, Bonci A, Stein EA (2014) Dorsal medial prefrontal cortex (MPFC) circuitry in rodent models of cocaine use: implications for drug addiction therapies. Addict Biol 20:215–226. doi:10.1111/adb.12132

    Article  PubMed  Google Scholar 

  • Jentsch JD, Taylor JR (1999) Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacol 146:373–390

    Article  CAS  Google Scholar 

  • Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology 168:44–56

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Peters J, Knackstedt L (2006) Animal models and brain circuits in drug addiction. Mol Interv 6:339–344, Review

  • LaLumiere RT, Niehoff KE, Kalivas PW (2010) The infralimbic cortex regulates the consolidation of extinction after cocaine self-administration. Learn Mem 17:168–175. doi:10.1101/lm.1576810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Malvaez M, Sanchis-Segura C, Vo D, Lattal KM, Wood MA (2010) Modulation of chromatin modification facilitates extinction of cocaine-induced conditioned place preference. Biol Psychiatry 67:36–43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martín-García E, Courtin J, Renault P, Fiancette JF, Wurtz H, Simonnet A, Levet F, Herry C, Deroche-Gamonet V (2014) Frequency of cocaine self-administration influences drug seeking in the rat: optogenetic evidence for a role of the prelimbic cortex. Neuropsychopharmacology 10:2317–2330. doi:10.1038/npp.2014.66

    Google Scholar 

  • McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21:8655–8663

    CAS  PubMed  Google Scholar 

  • McGaugh JL (2006) Make mild moments memorable: add a little arousal. Trends Cogn Sci 10:345–347

    Article  PubMed  Google Scholar 

  • McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking behavior in rats. Psychopharmacology 168:57–65. doi:10.1007/s00213-002-1196-x

    Article  CAS  PubMed  Google Scholar 

  • McNally GP (2014) Extinction of drug seeking: neural circuits and approaches to augmentation. Neuropharmacology 76(Pt B):528–532. doi:10.1016/j.neuropharm.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  • Mihindou C, Guillem K, Navailles S, Vouillac C, Ahmed SH (2013) Discriminative inhibitory control of cocaine seeking involves the prelimbic prefrontal cortex. Biol Psychiatry 73:271–279

    Article  CAS  PubMed  Google Scholar 

  • Miller CA, Marshall JF (2004) Altered prelimbic cortex output during cue-elicited drug seeking. J Neurosci 24:6889–6897

    Article  CAS  PubMed  Google Scholar 

  • Milton AL, Everitt BJ (2012) The persistence of maladaptive memory: addiction, drug memories and anti-relapse treatments. Neurosci Biobehav Rev 36:1119–1139

    Article  PubMed  Google Scholar 

  • Mingote S, de Bruin JPC, Feesntra MGP (2004) Noradrenaline and dopamine efflux in the prefrontal cortex in relation to appetitive classical conditioning. J Neurosci 24:2475–2480

    Article  CAS  PubMed  Google Scholar 

  • Mueller D, Cahill SP (2010) Noradrenergic modulation of extinction learning and exposure therapy. Behav Brain Res 208:1–11

    Article  CAS  PubMed  Google Scholar 

  • Myers KM, Carlezon WA Jr (2012) D-cycloserine effects on extinction of conditioned responses to drug-related cues. Biol Psychiatry 71:947–955. doi:10.1016/j.biopsych.2012.02.030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Osini C, Bonito-Oliva A, Conversi D, Cabib S (2008) Genetic liability increases propensity to prime-induced reinstatement of conditioned place preference in mice exposed to low cocaine. Psychopharmacology 198:287–296

    Article  Google Scholar 

  • Otis JM, Dashew KB, Mueller D (2013) Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J Neurosci 33:1271a–1281a. doi:10.1523/JNEUROSCI.3463-12.2013

    Article  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. In an investigation of the physiological activity of the cerebral cortex. Oxford University Press, London

    Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28:6046–6053. doi:10.1523/JNEUROSCI.1045-08.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peters J, Kalivas PW, Quirk GJ (2009) Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 16:279–288. doi:10.1101/lm.1041309

    Article  PubMed Central  PubMed  Google Scholar 

  • Puglisi-Allegra S, Ventura R (2012) Prefrontal/accumbal catecholamine system processes high motivational salience. Front Behav Neurosci 6:31. doi:10.3389/fnbeh.2012.00031

    Article  PubMed Central  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Rev 18:247–291

    Article  CAS  PubMed  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54:1–42

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, de Wit H, Eikelboom R (1984) Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol Rev 91:251–268

    Article  CAS  PubMed  Google Scholar 

  • Sun N, Chi N, Lauzon N, Bishop S, Tan H, Laviolette SR (2011) Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex. Cereb Cortex 12:2665–2680. doi:10.1093/cercor/bhr031

    Article  Google Scholar 

  • Taylor JR, Olausson P, Quinn JJ, Torregrossa MM (2009) Targeting extinction and reconsolidation mechanisms to combat the impact of drug cues on addiction. Neuropharmacology 56(Suppl 1):186–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torregrossa MM, Taylor JR (2013) Learning to forget: manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology (Berl) 4:659–672. doi:10.1007/s00213-012-2750-9

    Article  Google Scholar 

  • Ventura R, Puglisi-Allegra S (2005) Environment makes amphetamine-induced dopamine release in the nucleus accumbens totally impulse-dependent. Synapse 58:211–214

    Article  CAS  PubMed  Google Scholar 

  • Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23:1879–1885

    CAS  PubMed  Google Scholar 

  • Ventura R, Alcaro A, Puglisi-Allegra S (2005) Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cerebral Cortex 15:1877–1886

    Article  PubMed  Google Scholar 

  • Ventura R, Morrone C, Puglisi-Allegra S (2007) Prefrontal/accumbal catecholamine system determines motivational salience attribution to both reward and aversion-related stimuli. Proc Natl Acad Sci U S A 104:5181–5186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ventura R, Latagliata EC, Morrone C, La Mela I, Puglisi-Allegra S (2008) Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS One 3:3044. doi:10.1371/journal.pone.0003044

    Article  Google Scholar 

  • Wang Y, Zhang QJ, Liu J, Ali U, Gui ZH, Hui YP, Wang T, Chen L, Li Q (2010) Noradrenergic lesion of the locus coeruleus increases the firing activity of the medial prefrontal cortex pyramidal neurons and the role of alpha2-adrenoceptors in normal and medial forebrain bundle lesioned rats. Brain Res 1324:64–74

    Article  CAS  PubMed  Google Scholar 

  • Weissenborn R, Robbins TW, Everitt BJ (1997) Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology 134:242–257

    Article  CAS  PubMed  Google Scholar 

  • Willcocks AL, McNally GP (2013) The role of medial prefrontal cortex in extinction and reinstatement of alcohol-seeking in rats. Eur J Neurosci 37:259–268

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sergio Papalia for his skillful assistance. This work was supported by “Ricerca Corrente”, Italian Ministry of Health and Ateneo 2011, Sapienza University of Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Claudio Latagliata.

Ethics declarations

All experiments were carried out in accordance with Italian national law (DL 116/92 and DL 26/2014) on the use of animals for research based on the European Communities Council Directives (86/609/EEC and 2010/63/UE), and approved by the ethics committee of the Italian Ministry of Health (license/approval ID #: 10/2011-B and 42/2015-PR).

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latagliata, E.C., Saccoccio, P., Milia, C. et al. Norepinephrine in prelimbic cortex delays extinction of amphetamine-induced conditioned place preference. Psychopharmacology 233, 973–982 (2016). https://doi.org/10.1007/s00213-015-4177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4177-6

Keywords

Navigation