Skip to main content
Log in

Serotonin (5-HT)1A receptor agonism and 5-HT7 receptor antagonism ameliorate the subchronic phencyclidine-induced deficit in executive functioning in mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Reversal learning (RL), a type of executive function, dependent on prefrontal cortical function, is impaired in rodents by subchronic (sc) treatment with the N-methyl-d-aspartate receptor antagonist, phencyclidine (PCP), a widely studied model of cognitive impairment in schizophrenia (CIS).

Objective

The principal objective of this study was to determine the ability of serotonin (5-HT)1A partial agonism and 5-HT7 receptor antagonism to improve RL in scPCP-treated mice.

Methods

Male C57BL/6J mice were trained on an operant RL (ORL) task, then received PCP, 10 mg/kg, or saline, bid, for 7 days, followed by a 7-day washout period.

Results

scPCP significantly diminished the percent correct responding, increased total incorrect trials, and total incorrect responses, in the reversal phase performance of the ORL task. Pre-treatment with the selective 5-HT1A partial agonist, tandospirone, or the selective 5-HT7 antagonist, SB269970, but not the 5-HT7 agonist, AS 19, reversed the scPCP-induced deficit in RL. Pre-treatment with atypical antipsychotic drug lurasidone, which is a 5-HT1A partial agonist and 5-HT7 antagonist, as well as a 5-HT2A and dopamine (D)2 antagonist, also reversed RL deficit in the scPCP-treated mice. Furthermore, the selective 5-HT1A antagonist, WAY100635, blocked the ability of lurasidone to reverse the scPCP-induced RL deficit.

Conclusions

These results indicate that 5-HT7 antagonism and 5-HT1A partial agonism contribute to restoration of RL in scPCP-treated mice. It is suggested that these two mechanisms are effective in restoring RL by decreasing excessive GABAergic inhibition of cortical pyramidal neurons following withdrawal of scPCP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AAPD:

Atypical antipsychotic drug

CIAS:

Cognitive impairment in schizophrenia

DA:

Dopamine

EF:

Executive functioning

FR:

Fixed ratio

GABA:

Gamma amino butyric acid

mPFC:

Medial prefrontal cortex

NMDAR:

N-methyl-d-aspartate receptor

NOR:

Novel object recognition

ORL:

Operant reversal learning

PCP:

Phencyclidine

RL:

Reversal learning

sc:

Subchronic

References

  • Abdul-Monim Z, Reynolds GP, Neill JC (2003) The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J Psychopharmacol 17(1):57–65

    Article  CAS  PubMed  Google Scholar 

  • Abdul-Monim Z, Reynolds GP, Neill JC (2006) The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res 169(2):263–273

    Article  CAS  PubMed  Google Scholar 

  • Alsio J, Nilsson SR, Gastambide F, Wang RA, Dam SA, Mar AC, et al. (2015) The role of 5-HT receptors in touchscreen visual reversal learning in the rat: a cross-site study. Psychopharmacology

  • Beique JC, Campbell B, Perring P, Hamblin MW, Walker P, Mladenovic L et al (2004) Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 24(20):4807–4817

    Article  CAS  PubMed  Google Scholar 

  • Birrell JM, Brown VJ (2000) Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci 20(11):4320–4324

    CAS  PubMed  Google Scholar 

  • Boulougouris V, Glennon JC, Robbins TW (2008) Dissociable effects of selective 5-HT2A and 5-HT2C receptor antagonists on serial spatial reversal learning in rats. Neuropsychopharmacology 33(8):2007–2019

    Article  CAS  PubMed  Google Scholar 

  • Brady AM, Floresco SB (2015) Operant procedures for assessing behavioral flexibility in rats. J Vis Exp 96, e52387

    PubMed  Google Scholar 

  • Brigman JL, Ihne J, Saksida LM, Bussey TJ, Holmes A (2009) Effects of subchronic phencyclidine (PCP) treatment on social behaviors, and operant discrimination and reversal learning in C57BL/6J mice. Front Behav Neurosci 3:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Celada P, Puig MV, Artigas F (2013) Serotonin modulation of cortical neurons and networks. Front Integr Neurosci 7:25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Yung KK, Chan YS, Yung WH (2008) 5-HT excites globus pallidus neurons by multiple receptor mechanisms. Neuroscience 151(2):439–451

    Article  CAS  PubMed  Google Scholar 

  • Choi YK, Snigdha S, Shahid M, Neill JC, Tarazi FI (2009) Subchronic effects of phencyclidine on dopamine and serotonin receptors: implications for schizophrenia. J Mol Neurosci 38(3):227–235

    Article  CAS  PubMed  Google Scholar 

  • Chung YC, Li Z, Dai J, Meltzer HY, Ichikawa J (2004) Clozapine increases both acetylcholine and dopamine release in rat ventral hippocampus: role of 5-HT1A receptor agonism. Brain Res 1023(1):54–63

    Article  CAS  PubMed  Google Scholar 

  • Clark L, Cools R, Robbins TW (2004) The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55(1):41–53

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Roberts AC, Robbins TW (2008) Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci 12(1):31–40

    Article  PubMed  Google Scholar 

  • D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66:115–142

    Article  PubMed Central  PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148(11):1474–1486

    Article  CAS  PubMed  Google Scholar 

  • Egerton A, Allison C, Brett RR, Pratt JA (2006) Cannabinoids and prefrontal cortical function: insights from preclinical studies. Neurosci Biobehav Rev 30(5):680–695

    Article  CAS  PubMed  Google Scholar 

  • El-Ghundi M, O’Dowd BF, George SR (2007) Insights into the role of dopamine receptor systems in learning and memory. Rev Neurosci 18(1):37–66

    Article  CAS  PubMed  Google Scholar 

  • Enomoto T, Tse MT, Floresco SB (2011) Reducing prefrontal gamma-aminobutyric acid activity induces cognitive, behavioral, and dopaminergic abnormalities that resemble schizophrenia. Biol Psychiatry 69(5):432–441

    Article  CAS  PubMed  Google Scholar 

  • Eriksson TM, Golkar A, Ekstrom JC, Svenningsson P, Ogren SO (2008) 5-HT7 receptor stimulation by 8-OH-DPAT counteracts the impairing effect of 5-HT(1A) receptor stimulation on contextual learning in mice. Eur J Pharmacol 596(1–3):107–110

    Article  CAS  PubMed  Google Scholar 

  • Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A et al (2010) Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 35(3):591–604

    Article  PubMed Central  PubMed  Google Scholar 

  • Gasbarri A, Cifariello A, Pompili A, Meneses A (2008) Effect of 5-HT(7) antagonist SB-269970 in the modulation of working and reference memory in the rat. Behav Brain Res 195(1):164–170

    Article  CAS  PubMed  Google Scholar 

  • Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72(1):41–51

    Article  PubMed  Google Scholar 

  • Hagan JJ, Price GW, Jeffrey P, Deeks NJ, Stean T, Piper D et al (2000) Characterization of SB-269970-A, a selective 5-HT(7) receptor antagonist. Br J Pharmacol 130(3):539–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagger C, Buckley P, Kenny JT, Friedman L, Ubogy D, Meltzer HY (1993) Improvement in cognitive functions and psychiatric symptoms in treatment-refractory schizophrenic patients receiving clozapine. Biol Psychiatry 34(10):702–712

    Article  CAS  PubMed  Google Scholar 

  • Harvey PD (2015) The clinical utility of lurasidone in schizophrenia: patient considerations. Neuropsychiatr Dis Treat 11:1103–1109

    Article  PubMed Central  PubMed  Google Scholar 

  • Harvey PD, Ogasa M, Cucchiaro J, Loebel A, Keefe RS (2011) Performance and interview-based assessments of cognitive change in a randomized, double-blind comparison of lurasidone vs. ziprasidone. Schizophr Res 127(1–3):188–194

    Article  PubMed  Google Scholar 

  • Harvey PD, Siu CO, Hsu J, Cucchiaro J, Maruff P, Loebel A (2013) Effect of lurasidone on neurocognitive performance in patients with schizophrenia: a short-term placebo- and active-controlled study followed by a 6-month double-blind extension. Eur Neuropsychopharmacol 23(11):1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Homberg JR (2012) Serotonin and decision making processes. Neurosci Biobehav Rev 36(1):218–236

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Meltzer HY (2012) The role of 5-HT1A receptors in phencyclidine (PCP)-induced novel object recognition (NOR) deficit in rats. Psychopharmacology 221(2):205–215

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Huang M, Meltzer HY (2011) The role of 5-hydroxytryptamine 7 receptors in the phencyclidine-induced novel object recognition deficit in rats. J Pharmacol Exp Ther 338(2):605–614

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi M, Hannaway KE, Adelekun AE, Huang M, Jayathilake K, Meltzer HY (2013) D(1) receptor agonists reverse the subchronic phencyclidine (PCP)-induced novel object recognition (NOR) deficit in female rats. Behav Brain Res 238:36–43

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Horiguchi M, Felix AR, Meltzer HY (2012) 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux. Neuroreport 23(7):436–440

    CAS  PubMed  Google Scholar 

  • Huang M, Panos JJ, Kwon S, Oyamada Y, Rajagopal L, Meltzer HY (2014) Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism. J Neurochem 128(6):938–949

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa J, Ishii H, Bonaccorso S, Fowler WL, O’Laughlin IA, Meltzer HY (2001) 5-HT(2A) and D(2) receptor blockade increases cortical DA release via 5-HT(1A) receptor activation: a possible mechanism of atypical antipsychotic-induced cortical dopamine release. J Neurochem 76(5):1521–1531

    Article  CAS  PubMed  Google Scholar 

  • Idris N, Neill J, Grayson B, Bang-Andersen B, Witten LM, Brennum LT et al (2010) Sertindole improves sub-chronic PCP-induced reversal learning and episodic memory deficits in rodents: involvement of 5-HT(6) and 5-HT (2A) receptor mechanisms. Psychopharmacology 208(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi T, Horisawa T, Tokuda K, Ishiyama T, Ogasa M, Tagashira R et al (2010) Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther 334(1):171–181

    Article  CAS  PubMed  Google Scholar 

  • Javitt DC (2012) Twenty-five years of glutamate in schizophrenia: are we there yet? Schizophr Bull 38(5):911–913

    Article  PubMed Central  PubMed  Google Scholar 

  • Jentsch JD, Dazzi L, Chhatwal JP, Verrico CD, Roth RH (1998) Reduced prefrontal cortical dopamine, but not acetylcholine, release in vivo after repeated, intermittent phencyclidine administration to rats. Neurosci Lett 258(3):175–178

    Article  CAS  PubMed  Google Scholar 

  • Kargieman L, Riga MS, Artigas F, Celada P (2012) Clozapine reverses phencyclidine-induced desynchronization of prefrontal cortex through a 5-HT(1A) receptor-dependent mechanism. Neuropsychopharmacology 37(3):723–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

    Article  CAS  PubMed  Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288(2):774–781

    CAS  PubMed  Google Scholar 

  • Laurent V, Podhorna J (2004) Subchronic phencyclidine treatment impairs performance of C57BL/6 mice in the attentional set-shifting task. Behav Pharmacol 15(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Lewis DA, Volk DW, Hashimoto T (2004) Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology 174(1):143–150

    Article  CAS  PubMed  Google Scholar 

  • Lisman J (2012) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 22(3):537–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynch G, Rex CS, Chen LY, Gall CM (2008) The substrates of memory: defects, treatments, and enhancement. Eur J Pharmacol 585(1):2–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLean SL, Idris NF, Woolley ML, Neill JC (2009a) D(1)-like receptor activation improves PCP-induced cognitive deficits in animal models: implications for mechanisms of improved cognitive function in schizophrenia. Eur Neuropsychopharmacol 19(6):440–450

    Article  CAS  PubMed  Google Scholar 

  • McLean SL, Woolley ML, Thomas D, Neill JC (2009b) Role of 5-HT receptor mechanisms in sub-chronic PCP-induced reversal learning deficits in the rat. Psychopharmacology 206(3):403–414

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (2015) Attention must be paid: the association of plasma clozapine/NDMC ratio with working memory. Am J Psychiatry 172(6):502–504

    Article  PubMed  Google Scholar 

  • Meltzer HY, Huang M (2008) In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res 172:177–197

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, McGurk SR (1999) The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull 25(2):233–255

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Sumiyoshi T (2008) Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res 195(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Horiguchi M, Massey BW (2011) The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology 213(2–3):289–305

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Rajagopal L, Huang M, Oyamada Y, Kwon S, Horiguchi M (2013) Translating the N-methyl-d-aspartate receptor antagonist model of schizophrenia to treatments for cognitive impairment in schizophrenia. Int J Neuropsychopharmacol 16(10):2181–2194

    Article  CAS  PubMed  Google Scholar 

  • Meneses A (2004) Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav Brain Res 155(2):275–282

    Article  CAS  PubMed  Google Scholar 

  • Murai T, Nakako T, Ikejiri M, Ishiyama T, Taiji M, Ikeda K (2013) Effects of lurasidone on executive function in common marmosets. Behav Brain Res 246:125–131

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima T, Mouri A, Murai R, Noda Y (2006) Animal model of schizophrenia: dysfunction of NMDA receptor-signaling in mice following withdrawal from repeated administration of phencyclidine. Ann N Y Acad Sci 1086:160–168

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Murai R, Matsui K, Kamei H, Noda Y, Furukawa H et al (2009) Aripiprazole ameliorates phencyclidine-induced impairment of recognition memory through dopamine D1 and serotonin 5-HT1A receptors. Psychopharmacology 202(1–3):315–328

    Article  CAS  PubMed  Google Scholar 

  • Neill JC, Barnes S, Cook S, Grayson B, Idris NF, McLean SL et al (2010) Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol Ther 128(3):419–432

    Article  CAS  PubMed  Google Scholar 

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T et al (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20(2):106–118

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A (2015) Targeting the serotonin 5-HT7 receptor in the search for treatments for CNS disorders: rationale and progress to date. CNS Drugs 29(4):265–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Kos T, Fijal K, Holuj M, Rafa D, Popik P (2013) Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats. PLoS One 8(6), e66695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nomura T, Oyamada Y, Fernandes HB, Remmers C, Xu J, Meltzer H, et al. (2015) Subchronic phencyclidine treatment in adult mice increases GABAergic transmission and LTP threshold in the hippocampus. Neuropharmacology

  • Perez-Garcia GS, Meneses A (2005) Effects of the potential 5-HT7 receptor agonist AS 19 in an autoshaping learning task. Behav Brain Res 163(1):136–140

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal L, Massey BW, Huang M, Oyamada Y, Meltzer HY (2013) The novel object recognition test in rodents in relation to cognitive impairment in schizophrenia. Curr Pharm Des

  • Robbins TW (2005) Chemistry of the mind: neurochemical modulation of prefrontal cortical function. J Comp Neurol 493(1):140–146

    Article  CAS  PubMed  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Royall DR, Lauterbach EC, Cummings JL, Reeve A, Rummans TA, Kaufer DI et al (2002) Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J Neuropsychiatry Clin Neurosci 14(4):377–405

    Article  PubMed  Google Scholar 

  • Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P et al (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia. Arch Gen Psychiatry 51(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Shallice T, Burgess P (1996) The domain of supervisory processes and temporal organization of behaviour. Philos Trans R Soc Lond Ser B Biol Sci 351(1346):1405–1411, discussion 1411–1402

    Article  CAS  Google Scholar 

  • Shimizu H, Karai N, Hirose A, Tatsuno T, Tanaka H, Kumasaka Y et al (1988) Interaction of SM-3997 with serotonin receptors in rat brain. Jpn J Pharmacol 46(3):311–314

    Article  CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283(5408):1657–1661

    Article  CAS  PubMed  Google Scholar 

  • Sun YN, Wang T, Wang Y, Han LN, Li LB, Zhang YM et al (2015) Activation of 5-HT1A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson’s disease. Neuropharmacology 95:181–191

    Article  PubMed  Google Scholar 

  • Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69(5):1749–1757

    CAS  PubMed  Google Scholar 

  • Taylor SF, Tso IF (2014) GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res

  • Tokarski K, Kusek M, Hess G (2011) 5-HT7 receptors modulate GABAergic transmission in rat hippocampal CA1 area. J Physiol Pharmacol 62(5):535–540

    CAS  PubMed  Google Scholar 

  • Wesolowska A, Kowalska M (2008) Influence of serotonin 5-HT(7) receptor blockade on the behavioral and neurochemical effects of imipramine in rats. Pharmacol Rep 60(4):464–474

    CAS  PubMed  Google Scholar 

  • Woodward ND, Purdon SE, Meltzer HY, Zald DH (2005) A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int J Neuropsychopharmacol 8(3):457–472

    Article  CAS  PubMed  Google Scholar 

  • Yuen EY, Li X, Wei J, Horiguchi M, Meltzer HY, Yan Z (2012) The novel antipsychotic drug lurasidone enhances N-methyl-d-aspartate receptor-mediated synaptic responses. Mol Pharmacol 81(2):113–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sunoh Kwon for his assistance with drug preparations and Mr. Daniel Barrett Share for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Y. Meltzer.

Ethics declarations

Conflict of interest

Herbert Y Meltzer has received grant support from and been a consultant to Sumitomo Dainippon, Sunovion, Janssen, Novartis, ACADIA, Ferrosan, Roche, Takeda, Pfizer, Eli Lilly, EnVivo, Reviva, Alkermes, Astellas, Jazz, Solvay, SureGene, and Bristol Myers Squibb. Herbert Y Meltzer has been a consultant to Lundbeck and Teva. Herbert Y Meltzer is a shareholder of ACADIA, SureGene, and Astra Zeneca. Lakshmi Rajagopal, Bill Massey, and Eric Michael do not have any conflict of interest.

Support

This research is supported by a grant from Sumitomo Dainippon Pharma Co., Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagopal, L., Massey, B.W., Michael, E. et al. Serotonin (5-HT)1A receptor agonism and 5-HT7 receptor antagonism ameliorate the subchronic phencyclidine-induced deficit in executive functioning in mice. Psychopharmacology 233, 649–660 (2016). https://doi.org/10.1007/s00213-015-4137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4137-1

Keywords

Navigation