Skip to main content
Log in

Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Brain-derived neurotrophic factor (BDNF) and signaling at its receptor, tropomyosin-related kinase B (TrkB), are implicated in the rapid and long-lasting antidepressant effects of ketamine. Moreover, a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), and/or TrkB antagonist, ANA-12, shows antidepressant effects in animal models of depression.

Objective

The objective of this study is to compare the influence of ketamine, 7,8-DHF, and ANA-12 on antidepressant activity in the social defeat stress model.

Results

In the tail suspension and forced swimming tests, ketamine, 7,8-DHF, or ANA-12 markedly attenuated the increased immobility time in depressed mice compared with the vehicle-treated group. In the sucrose preference test, all drugs significantly improved the reduced preference in depressed mice at both 1 and 3 days after a single dose. Antidepressant effect of ketamine, but not 7,8-DHF or ANA-12, was still detectable 7 days after a single dose. Western blot analyses showed that ketamine, but not 7,8-DHF or ANA-12, markedly attenuated reduced levels of BDNF and postsynaptic density protein 95 (PSD-95) in the prefrontal cortex (PFC), dentate gyrus (DG), and CA3 of the hippocampus in depressed mice 8 days after a single dose. Furthermore, ketamine markedly increased reduced levels of GluA1 in the PFC and DG of depressed mice. In contrast, ketamine showed no effect against increased levels of BDNF, PSD-95, and GluA1 observed in the nucleus accumbens of depressed mice.

Conclusions

Compared with 7,8-DHF and ANA-12, ketamine is a longer-lasting antidepressant in the social defeat stress model, and synaptogenesis may be required for the mechanisms that promote sustained antidepressant effects of ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aan Het Rot M, Zarate CA Jr, Charney DS, Mathew SJ (2012) Ketamine for depression: where do we go from here? Biol Psychiatry 72:537–547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354

    Article  CAS  PubMed  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    Article  CAS  PubMed  Google Scholar 

  • Castrén E (2014) Neurotrophins and psychiatric disorders. Handb Exp Pharmacol 220:461–479

    Article  PubMed  Google Scholar 

  • Cazorla M, Prémont J, Mann A, Girard N, Kellendonk C, Rognan D (2011) Identification of a low-molecular weight TrkB antagonist with anxiolytic and antidepressant activity in mice. J Clin Invest 121:1846–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA Jr (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67:793–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neutrotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosin kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60:804–815

    Article  CAS  PubMed  Google Scholar 

  • Dwyer JM, Duman RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry 73:1189–1198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freudenberg F, Celikel T, Reif A (2015) The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev 52:193–206

    Article  CAS  PubMed  Google Scholar 

  • Golden SA, Covington HE III, Berton O, Russo SJ (2011) A standard protocol for repeated social defeat stress in mice. Nat Protoc 6:1183–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hashimoto K (2009) Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 61:105–123

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiatry Clin Neurosci 64:341–357

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2011) The role of glutamate on the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 35:1558–15568

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2013) Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression. Prog Neurobiol 100:15–29

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K (2014) The R-stereoisomer of ketamine as an alternative for ketamine for treatment-resistant major depression. Clin Psychopharmacol Neurosci 12:72–73

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashimoto K (2015) Inflammatory biomarkers as differential predictors of antidepressant response. Int J Mol Sci 16:7796–7801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Rev 45:104–114

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Neurosci 263:367–377

    Article  Google Scholar 

  • Homberg JR, Molteni R, Calabrese F, Riva MA (2014) The serotonin-BDNF duo: developmental implications for the vulnerability to psychopathology. Neurosci Biobehav Rev 43:35–47

    Article  CAS  PubMed  Google Scholar 

  • Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A 107:2687–2692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karege F, Vaudan G, Schwald M, Perround N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Mol Brain Res 136:29–37

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Chaki S (2014) Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res 271:111–115

    Article  CAS  PubMed  Google Scholar 

  • Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224:107–111

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Sanacora G, Duman RS (2013) Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73:1133–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol Oct 31;18(1) doi: 10.1093/ijnp/pyu033

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li SX, Zhang JC, Wu J, Hashimoto K (2014) Antidepressant effects of ketamine on depression-like behavior in juvenile mice after neonatal dexamethasone exposure. Clin Psychopharmacol Neurosci 12:124–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma XC, Dang YH, Jia M, Ma R, Wang F, Wu J, Gao CG, Hashimoto K (2013) Long-lasting antidepressant action of ketamine, but not glycogen synthase kinase-3 inhibitor SB216763, in the chronic mild stress model of mice. PLoS One 8:e56053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma M, Ren Q, Zhang JC, Hashimoto K (2014) Effects of brilliant blue G on serum tumor necrosis factor-α levels and depression-like behavior in mice after lipopolysaccharide administration. Clin Psychopharmacol Neurosci 12:31–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  CAS  PubMed  Google Scholar 

  • Ohgi Y, Futamura T, Hashimoto K (2015) Glutamate signaling in synaptogenesis and NMDA receptors as potential therapeutic targets for psychiatric disorders. Curr Mol Med 15:206–221

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Zhang JC, Fujita Y, Ma M, Wu J, Hashimoto K (2013) Effects of TrkB agonist 7,8-dihydroxyflavone on sensory gating deficits in mice after administration of methamphetamine. Pharmacol Biochem Behav 106:124–127

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Zhang JC, Ma M, Fujita Y, Wu J, Hashimoto K (2014) Protective effects of TrkB agonist 7,8-dihydroxyflavone on the behavioral changes and neurotoxicity in mice after administration of methamphetamine. Psychopharmacology (Berlin) 231:159–166

    Article  CAS  Google Scholar 

  • Sanacora G, Schatzberg AF (2015) Ketamine: promising path or false prophecy in the development of novel therapeutics for mood disorders? Neuropsychopharmacology 40:259–267

    Article  CAS  PubMed  Google Scholar 

  • Sanacora G, Zarate CA, Krystal JH, Manji HK (2008) Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 7:426–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato Y, Kobayashi E, Hakamata Y, Kobahashi M, Wainai T, Murayama T, Mishina M, Seo N (2004) Chronopharmacological studies of ketamine in normal and NMDA epsilon1 receptor knockout mice. Br J Anaesth 92:859–864

    Article  CAS  PubMed  Google Scholar 

  • Shirayama Y, Chen AC-H, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    CAS  PubMed  Google Scholar 

  • Shirayama Y, Yang C, Zhang JC, Ren Q, Yao W, Hashimoto K (2015) Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol in press.

  • Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30:563–569

    Article  CAS  PubMed  Google Scholar 

  • Tokita K, Yamaji T, Hashimoto K (2012) Role of glutamate signaling in preclinical and/or mechanistic models of depression. Pharmacol Biochem Behav 100:688–704

    Article  CAS  PubMed  Google Scholar 

  • Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2012) Depression fact sheet No. 369/October 2012. Available at http://www.who.int/mediacentre/factsheets/fs369/en/index.html

  • Yang C, Hashimoto K (2014) Rapid antidepressant effects and abuse liability of ketamine. Psychopharmacology (Berlin) 231:2041–2042

    Article  CAS  Google Scholar 

  • Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ (2013) Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci 118:3–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Hashimoto K (2015) Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer Resilience to inescapable stress. Int J Neuropsychopharmacol 18:pyu121

    Article  PubMed Central  PubMed  Google Scholar 

  • Yao W, Zhang JC, Dong C, Zhuang C, Hirota S, Inanaga K, Hashimoto K (2015) Effects of amycenone on serum levels of tumor necrosis factor-α and depression-like behaviors in mice after administration of lipopolysaccharide. Pharmacol Biochem Behav 136:7–12

    Article  CAS  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

  • Zarate C Jr, Machado-Vieira R, Henter I, Ibrahim L, Diazgranados N, Salvadore G (2010) Glutamatergic modulators: the future of treating mood disorders? Harv Rev Psychiatry 18:293–303

    Article  PubMed Central  PubMed  Google Scholar 

  • Zarate CA Jr, Brutsche NE, Ibrahim L, Franco-Chaves J, Diazgranados N, Cravchik A, Selter J, Marquardt CA, Liberty V, Luckenbaugh DA (2012) Replication of ketamine’s antidepressant efficacy in bipolar depression: a randomized controlled add-on trial. Biol Psychiatry 71:939–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JC, Li SX, Hashimoto KJ (2014) R(−)-ketamine shows greater potency and longer lasting antidepressant effects than S(+)-ketamine. Pharmacol Biochem Behav 116:137–141

    Article  CAS  PubMed  Google Scholar 

  • Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, Li SX, Shirayama Y, Hashimoto K (2015) Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol 18:pyu077

    Article  PubMed Central  Google Scholar 

  • Zhao T, Huang GB, Muna SS, Bagalkot TR, Jin HM, Chae HJ, Chung YC (2013) Effects of chronic social defeat stress on behavior and choline acetyltransferase, 78-kDa glucose-regulated protein, and CCAAT/enhancer-binding protein (C/EBP) homologous protein in adult mice. Psychopharmacology (Berlin) 228:217–230

    Article  CAS  Google Scholar 

  • Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 29:419–423

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research on Innovative Areas of the Ministry of Education, Culture, Sports, Science and Technology, Japan (to K.H., #24116006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Ketamine, 7,8-DHF and ANA-12 did not show antidepressant effects in control mice. A: Treatment schedule and behavioral tests. B: LMT, C: TST and D: FST were performed 1 hour, 3 hours, and 5 hours after injection of ketamine (10 mg/kg), 7,8-DHF (10 mg/kg) or ANA-12 (0.5 mg/kg), respectively. E-G: SPT was performed 1 day (day 2), 3 days (day 4) and 7 days (day 8) after injection of ketamine, 7,8-DHF or ANA-12. The values represent the mean ± S.E.M. (n=8-10). Con: control; Veh: vehicle; DHF: 7,8-dihydroxyflavone; ANA: ANA-12; Ket: ketamine; LMT: locomotion test; TST: tail suspension test; FST: forced swimming test; SPT: 1% sucrose preference test.(GIF 109 kb)

High Resolution (TIFF 4337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jc., Yao, W., Dong, C. et al. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology 232, 4325–4335 (2015). https://doi.org/10.1007/s00213-015-4062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4062-3

Keywords

Navigation