Skip to main content
Log in

Diurnal pituitary-adrenal activity during schedule-induced polydipsia of water and ethanol in cynomolgus monkeys (Macaca fascicularis)

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Intermittent delivery of an important commodity (e.g., food pellets) generates excessive behaviors as an adjunct to the schedule of reinforcement (adjunctive behaviors) that are hypothesized to be due to conflict between engaging and escaping a situation where reinforcement is delivered, but at suboptimal rates.

Objectives

This study characterized the endocrine correlates during schedule-induced polydipsia of water and ethanol using a longitudinal approach in non-human primates.

Methods

Plasma adrenocorticotropic hormone (ACTH) and cortisol were measured in samples from awake cynomolgus monkeys (Macaca fascicularis, 11 adult males) obtained at the onset, mid-day, and offset of their 12-h light cycle. The monkeys were induced to drink water and ethanol (4 % w/v, in water) using a fixed time (FT) 300-s interval schedule of pellet delivery. The induction fluid changed every 30 sessions in the following order: water, 0.5 g/kg ethanol, 1.0 g/kg ethanol, and 1.5 g/kg ethanol. Following induction, ethanol and water were concurrently available for 22 h/day.

Results

The FT 300-s schedule gradually increased ACTH, but not cortisol, during water induction to a plateau sustained throughout ethanol induction in every monkey. Upon termination of the schedule, ACTH decreased to baseline and cortisol below baseline. Diurnal ACTH and cortisol were unrelated to the dose of ethanol, but ACTH rhythm flattened at 0.5 g/kg/day and remained flattened.

Conclusions

The coincidence of elevated ACTH with the initial experience of drinking to intoxication may have altered the mechanisms involved in the transition to heavy drinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta G, Hasenkamp W, Daunais JB, Friedman DP, Grant KA, Hemby SE (2010) Ethanol self-administration modulation of NMDA receptor subunit and related synaptic protein mRNA expression in prefrontal cortical fields in cynomolgus monkeys. Brain Res 318:144–154

    Article  Google Scholar 

  • Brett LP, Levine S (1979) Schedule-induced polydipsia suppresses pituitary-adrenal activity in rats. J Comp Physiol Psychol 93:946–956

    Article  PubMed  CAS  Google Scholar 

  • Born J, Fehm-Wolfsdorf G, Schiebe M, Rockstroh B, Fehm H-L, Voigt KH (1984) Dishabituating effects of an ACTH 4–9 analog in a vigilance task. Pharmacol Biochem Behav 21:513–519

    Article  PubMed  CAS  Google Scholar 

  • Bowman ME, Lopata A, Jaffe RB, Golos TG, Wickings J, Smith R (2001) Corticotropin-releasing hormone-binding protein in primates. Am J Primatol 53:123–130

    Article  PubMed  CAS  Google Scholar 

  • Boyd KN, Kumar S, O’Buckley TK, Porcu P, Morrow AL (2010) Ethanol induction of steroidogenesis in rat adrenal and brain is dependent upon pituitary ACTH release and de novo adrenal StAR synthesis. J Neurochem 112:784–796

    Article  PubMed  CAS  Google Scholar 

  • Brown TG, Flory RK (1972) Schedule-induced escape from fixed interval reinforcement. J Exp Anal Behav 17:395–403

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 5:374–381

    Article  PubMed  CAS  Google Scholar 

  • Cirulli F, van Oers H, De Kloet ER, Levine S (1994) Differential influence of corticosterone and dexamethasone on schedule-induced polydipsia in adrenalectomized rats. Behav Brain Res 65:33–39

    Article  PubMed  CAS  Google Scholar 

  • Colwell CS (2011) Linking neural activity and molecular oscillation in the SCN. Nat Neurosci 12:553–569

    Article  CAS  Google Scholar 

  • Cuzon Carlson VC, Seabold GK, Helms CM, Garg N, Odagiri M, Rau AR, Daunais J, Alvarez VA, Lovinger DM, Grant KA (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36:2513–2528

    Article  PubMed  CAS  Google Scholar 

  • Dantzer R, Terlouw C, Morméde P, Le Moal M (1988) Schedule-induced polydipsia experience decreases plasma corticosterone levels but increases plasma prolactin levels. Physiol Behav 43:275–279

    Article  PubMed  CAS  Google Scholar 

  • DeCarolis NA, Myracle A, Erbach J, Glowa J, Flores P, Riley AL (2003) Strain-dependent differences in schedule-induced polydipsia: an assessment in Lewis and Fischer rats. Pharmacol Biochem Behav 74:755–763

    Article  PubMed  CAS  Google Scholar 

  • De Wied D (1961) The significance of the antidiuretic hormone in the release mechanism of corticotropin. Endocrinology 68:956–970

    Article  PubMed  Google Scholar 

  • Falk JL (1961) Production of polydipsia in normal rats by an intermittent food schedule. Science 133:195–196

    Article  PubMed  CAS  Google Scholar 

  • Falk JL (1977) The origin and function of adjunctive behavior. Anim Learn Behav 5:325–335

    Article  Google Scholar 

  • Falk JL (1998) Drug abuse as an adjunctive behavior. Drug Alcohol Dep 52:91–98

    Article  CAS  Google Scholar 

  • Flores P, Pellón R (2000) Antipunishment effects of diazepam on two levels of suppression of schedule-induced drinking in rats. Pharmacol Biochem Behav 67:207–214

    Article  PubMed  CAS  Google Scholar 

  • Flory RK (1971) The control of schedule-induced polydipsia: frequency and magnitude of reinforcement. Learn Motiv 2:215–227

    Google Scholar 

  • Fry W, Kelleher RT, Cook L (1960) A mathematical index of performance on fixed-interval schedules of reinforcement. J Exp Anal Behav 3:193–199

    Article  PubMed  CAS  Google Scholar 

  • Gallagher TF, Yoshida K, Roffwarg HD, Fukushima DK, Weitzman ED, Hellman L (1973) ACTH and cortisol secretory patterns in man. J Clin Endocrinol Metab 36:1058–1068

    Article  PubMed  CAS  Google Scholar 

  • Grant KA, Johanson CE (1988) The nature of the scheduled reinforcer and adjunctive drinking in nondeprived rhesus monkeys. Pharmacol Biochem Behav 29:295–301

    Article  PubMed  CAS  Google Scholar 

  • Grant KA, Leng X, Green HL, Szeliga KT, Rogers LSM, Gonzales SW (2008) Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration. Alcohol Clin Exp Res 32:1824–1838

    Article  PubMed  CAS  Google Scholar 

  • Helms CM, McClintick M, Grant KA (2012a) Social rank, chronic ethanol self-administration and hypothalamic–pituitary–adrenal axis response in monkeys. Psychopharmacology 224:133–143

    Article  PubMed  CAS  Google Scholar 

  • Helms CM, Rossi DJ, Grant KA (2012b) Neurosteroid influences on sensitivity to ethanol. Front Endocrinol 3:1–19

    Article  Google Scholar 

  • Hermes MLHJ, Coderre EM, Buijs RM, Renaud LP (1996) GABA and glutamate mediate rapid neurotransmission from suprachiasmatic nucleus to hypothalamic paraventricular nucleus in rat. J Physiol 496:749–757

    PubMed  CAS  Google Scholar 

  • Herod SM, Dettmer AM, Novak MA, Meyer JS, Cameron JL (2011) Sensitivity to stress-induced reproductive dysfunction is associated with a selective but not a generalized increase in activity of the adrenal axis. Am J Physiol Endocrinol Metab 300:E28–E36

    Google Scholar 

  • Holgert H, Åman K, Cozzari C, Hartman BK, Brimijoin S, Emson P, Goldstein M, Hökfelt T (1995) The cholinergic innervation of the adrenal gland and its relation to enkephalin and nitric oxide synthase. Neuroreport 6:2576–2580

    Article  PubMed  CAS  Google Scholar 

  • Holgert H, Dagerlind Å, Hökfelt T (1998) Immunohistochemical characterization of the peptidergic innervation of the rat adrenal gland. Horm Met Res 30:315–322

    Article  CAS  Google Scholar 

  • Knott TK, Dopico AM, Dayanithi G, Lemos J, Treistman SN (2002) Integrated channel plasticity contributes to alcohol tolerance in neurohypophysial terminals. Mol Pharmacol 62:135–142

    Article  PubMed  CAS  Google Scholar 

  • Krystal JH, Petrakis IL, Krupitsky E, Schütz C, Trevisan L, S’Souza C (2003) NMDA receptor antagonism and the ethanol intoxication signal: from alcoholism risk to pharmacotherapy. Ann NY Acad Sci 1003:176–184

    Article  PubMed  CAS  Google Scholar 

  • Kuramoto H, Kondo H, Fujita T (1987) Calcitonin gene-related peptide (CGRP)-like immunoreactivity in scattered chromaffin cells and nerve fibers in the adrenal gland of rats. Cell Tissue Res 247:309–315

    Article  PubMed  CAS  Google Scholar 

  • Krueger C, Tian L (2004) A comparison of the general linear mixed model and repeated measures ANOVA using a dataset with multiple missing data points. Biol Res Nurs 6:151–1516

    Article  PubMed  Google Scholar 

  • Lamas E, Pellón R (1995) Food-deprivation effects on punished schedule-induced drinking in rats. J Exp Anal Behav 64:47–60

    Article  PubMed  CAS  Google Scholar 

  • Levine E (2000) The hypothalamus as a major integrating center. In: Conn PM, Freeman ME (eds) Neuroendocrinology in physiology and medicine, 1st edn. Humana Press Inc., Totowa, pp 75–93

    Chapter  Google Scholar 

  • Levine R, Levine S (1989) Role of the pituitary-adrenal hormones in the acquisition of schedule-induced polydipsia. Behav Neurosci 103:621–637

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Singer G, Irby D (1990) Effect of hypophysectomy on schedule-induced wheel running. Pharmacol Biochem Behav 35:739–742

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Singer G, Papasava M (1988) The role of adrenal corticosterone in schedule-induced wheel running. Pharmacol Biochem Behav 30:101–106

    Article  PubMed  CAS  Google Scholar 

  • López-Grancha M, López-Crespo G, Venero C, Cañadas F, Sánchez-Santed F, Sandi C, Flores P (2006) Differences in corticosterone level due to inter-food interval length: implications for schedule-induced polydipsia. Horm Behav 49:166–172

    Article  PubMed  Google Scholar 

  • Lydersen T, Perkins D, Thome S, Lowman E (1980) Choice of timeout during response-independent food schedules. J Exp Anal Behav 33:59–76

    Article  PubMed  CAS  Google Scholar 

  • McElroy B, Zakaria A, Glass JD, Prosser RA (2009) Ethanol modulates mammalian circadian clock phase resetting through extrasynaptic GABA receptor activation. Neurosci 164:842–848

    Article  CAS  Google Scholar 

  • Meier AH (1976) Daily variation in concentration of plasma corticosteroid in hypophysectomized rats. Endocrinology 98:1475–1479

    Article  PubMed  CAS  Google Scholar 

  • Mittleman G, Blaha CD, Phillips AG (1992) Pituitary-adrenal and dopaminergic modulation of schedule-induced polydipsia: behavioral and neurochemical evidence. Behav Neurosci 106:408–420

    Article  PubMed  CAS  Google Scholar 

  • Mittleman G, Jones GH, Robbins TW (1988) The relationship between schedule-induced polydipsia and pituitary-adrenal activity: pharmacological and behavioral manipulations. Behav Brain Res 28:315–324

    Article  PubMed  CAS  Google Scholar 

  • Nader MA, Woolverton WL (1992) Further characterization of adjunctive behavior generated by schedules of cocaine self-administration. Behav Pharmacol 3:65–74

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, D.C, p 125

    Google Scholar 

  • Pederson RC, Brownie AC, Ling N (1980) Pro-adrenocorticotropin/endorphin-derived peptides: coordinate action on adrenal steroidogenesis. Science 208:1044–1046

    Article  Google Scholar 

  • Pitts RC, Malagodi EF (1996) Effects of reinforcement amount on attack induced under a fixed-interval schedule in pigeons. J Exp Anal Behav 65:93–110

    Article  PubMed  CAS  Google Scholar 

  • Platt B, Beyer CE, Schechter LE, Rosenzweig-Lipson S (2008) Schedule-induced polydipsia: a rat model of obsessive-compulsive disorder. Curr Protoc Neurosci 43:9.27.1–9.27.8

    Google Scholar 

  • Roper TJ (1978) Diversity and substitutability of adjunctive activities under fixed-interval schedules of food reinforcement. J Exp Anal Behav 30:83–96

    Article  PubMed  CAS  Google Scholar 

  • Samson HH, Falk JL (1974) Schedule-induced ethanol polydipsia: enhancement by saccharin. Pharmacol Biochem Behav 2:835–838

    Article  PubMed  CAS  Google Scholar 

  • Shelton KL, Young JE, Grant KA (2001) A multiple schedule model of limited access drinking in the cynomolgus macaque. Behav Pharmacol 12:559–573

    Article  PubMed  CAS  Google Scholar 

  • Shimura M, Harata N, Tamai M, Akaike N (1996) Allosteric modulation of GABAA receptors in acutely dissociated neurons of the suprachiasmatic nucleus. Am J Physiol 270:C1726–C1734

    PubMed  CAS  Google Scholar 

  • Shively CA (1998) Social subordination stress, behavior, and central monoaminergic function in female cynomolgus monkeys. Biol Psychiatry 44:882–891

    Article  PubMed  CAS  Google Scholar 

  • Shively CA, Grant KA, Register TC (2002) Effects of long-term moderate alcohol consumption on agonistic and affiliative behavior of socially housed female cynomolgus monkeys (Macaca fascicularis). Psychopharmacology 165:1–8

    Article  PubMed  CAS  Google Scholar 

  • Spruijit BM, Josephy M, Van Rijzingen I, Maaswinkel H (1994) The ACTH(4–9) analog Org2766 modulates the behavioral changes induced by NMDA and the NMDA receptor antagonist AP5. J Neurosci 14:3225–3230

    Google Scholar 

  • Stöhr T, Szuran T, Welzl H, Pliska V, Feldon J, Pryce CR (2000) Lewis/Fischer rat strain differences in endocrine and behavioural responses to environmental challenge. Pharmacol Biochem Behav 67:809–819

    Article  PubMed  Google Scholar 

  • Tazi A, Dantzer R, Morméde P, Le Moal M (1986) Pituitary-adrenal correlates of schedule-induced polydipsia and wheel running in rats. Behav Brain Res 19:249–256

    Article  PubMed  CAS  Google Scholar 

  • Ulrich-Lai YM et al (2006) Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol 290:R1128–R1135

    Article  PubMed  CAS  Google Scholar 

  • van Wimersma Greidanus TB, Croiset G, de Wied D (2000) Neuroendocrine regulation of learning and memory. In: Conn PM, Freeman ME (eds) Neuroendocrinology in physiology and medicine. Humana Press Inc, Totowa, pp 353–370

    Chapter  Google Scholar 

  • Vivian JA, Green HL, Young JE, Majerksy LS, Thomas BW, Shively CA, Tobin JR, Nader MA, Grant KA (2001) Induction and maintenance of ethanol self-administration in cynomolgus monkeys (Macaca fascicularis): long-term characterization of sex and individual differences. Alcohol Clin Exp Res 25:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Vivian JA, Waters CA, Szeliga KT, Jordan K, Grant KA (2002) Characterization of the discriminative stimulus effects of N-methyl-D-aspartate ligands under different ethanol training conditions in the cynomolgus monkey (Macaca fascicularis). Psychopharmacology 162:273–281

    Article  PubMed  CAS  Google Scholar 

  • Wallace M, Singer G, Finlay J, Gibson S (1983) The effects of 6-OHDA lesions of the nucleus accumbens septum on schedule-induced drinking, wheel running and corticosterone levels in the rat. Pharmacol Biochem Behav 18:129–136

    Article  PubMed  CAS  Google Scholar 

  • Wand GS, Dobs AS (1991) Alterations in the hypothalamic–pituitary–adrenal axis in actively drinking alcoholics. J Clin Endocrinol Metab 72:1290–1295

    Article  PubMed  CAS  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229

    Article  PubMed  CAS  Google Scholar 

  • Wolthuis OL, de Wied D (1976) The effect of ACTH-analogues on motor behavior and visual evoked responses in rats. Pharmacol Biochem Behav 4:273–278

    Article  PubMed  CAS  Google Scholar 

  • Woods RJ, Grossman A, Saphier P, Kennedy K, Ur E, Behan D, Potter E, Vale W, Lowry PJ (1994) Association of human corticotropin-releasing hormone to its binding protein in blood may trigger clearance of the complex. J Clin Endocrinol Metab 78:73–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Erin E. Shannon, Sarah Thornton, Natalie Maners, and Dr. Patrizia Porcu for research and technical expertise. This research was supported by NIH Grants AA109431, AA010760, OD011092, and AA013510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa M. Helms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helms, C.M., Gonzales, S.W., Green, H.L. et al. Diurnal pituitary-adrenal activity during schedule-induced polydipsia of water and ethanol in cynomolgus monkeys (Macaca fascicularis). Psychopharmacology 228, 541–549 (2013). https://doi.org/10.1007/s00213-013-3052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3052-6

Keywords

Navigation