Skip to main content

Advertisement

Log in

Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems.

Objectives

This study examined whether eating high fat chow alters locomotor effects of cocaine (1–56 mg/kg) in adolescent and adult female rats.

Methods

Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow).

Results

After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults.

Conclusions

These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acri JB, Carter SR, Alling K, Geter-Douglass B, Dijkstra D, Wikstrom H, Katz JL, Witkin JM (1995) Assessment of cocaine-like discriminative stimulus effects of dopamine D3 receptor ligands. Eur J Pharmacol 281:R7–R9

    Article  PubMed  CAS  Google Scholar 

  • Adams JU, Careri JM, Efferen TR, Rotrosen J (2001) Differential effects of dopamine antagonists on locomotor activity, conditioned activity and conditioned place preference induced by cocaine in rats. Behav Pharmacol 12:603–611

    Article  PubMed  CAS  Google Scholar 

  • Amara SG, Sonders MS (1998) Neurotransmitter transporters as molecular targets for addictive drugs. Drug Alcohol Depend 51:87–96

    Article  PubMed  CAS  Google Scholar 

  • Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 24:137–141

    Article  PubMed  CAS  Google Scholar 

  • Anker JJ, Larson EB, Gliddon LA, Carroll ME (2007) Effects of progesterone on the reinstatement of cocaine-seeking behavior in female rats. Exp Clin Psychopharmacol 15:472–480

    Article  PubMed  CAS  Google Scholar 

  • Anker JJ, Zlebnik NE, Navin SF, Carroll ME (2011) Responding during signaled availability and nonavailability of iv cocaine and food in rats: age and sex differences. Psychopharmacology (Berl) 215:785–799

    Article  CAS  Google Scholar 

  • Baladi MG, Newman AH, France CP (2011) Influence of body weight and type of chow on the sensitivity of rats to the behavioral effects of the direct-acting dopamine-receptor agonist quinpirole. Psychopharmacology (Berl) 217:573–585

    Article  CAS  Google Scholar 

  • Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–187

    Article  PubMed  CAS  Google Scholar 

  • Bell SM, Stewart RB, Thompson SC, Meisch RA (1997) Food-deprivation increases cocaine-induced conditioned place preference and locomotor activity in rats. Psychopharmacology (Berl) 131:1–8

    Article  CAS  Google Scholar 

  • Bowman BP, Kuhn CM (1996) Age-related differences in the chronic and acute response to cocaine in the rat. Dev Psychobiol 29:597–611

    Article  PubMed  CAS  Google Scholar 

  • Bowman BP, Vaughan SR, Walker QD, Davis SL, Little PJ, Scheffler NM, Thomas BF, Kuhn CM (1999) Effects of sex and gonadectomy on cocaine metabolism in the rat. J Pharmacol Exp Ther 290:1316–1323

    PubMed  CAS  Google Scholar 

  • Butcher RL, Collins WE, Fugo NW (1974) Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology 94:1704–1708

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816

    Article  PubMed  CAS  Google Scholar 

  • Campbell UC, Carroll ME (2001) Effects of ketoconazole on the acquisition of intravenous cocaine self-administration under different feeding conditions in rats. Psychopharmacology (Berl) 154:311–318

    Article  CAS  Google Scholar 

  • Cano P, Jiménez-Ortega V, Larrad A, Reyes Toso CF, Cardinali DP, Esquifino AI (2008) Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 33:118–125

    Article  PubMed  CAS  Google Scholar 

  • Carr KD (2002) Augmentation of drug reward by chronic food restriction: behavioral evidence and underlying mechanisms. Physiol Behav 76:353–364

    Article  PubMed  CAS  Google Scholar 

  • Carroll ME, Campbell UC, Heideman P (2001) Ketoconazole suppresses food restriction-induced increases in heroin self-administration in rats: sex differences. Exp Clin Psychopharmacol 9:307–316

    Article  PubMed  CAS  Google Scholar 

  • Catlow BJ, Kirstein CL (2005) Heightened cocaine-induced locomotor activity in adolescent compared to adult female rats. J Psychopharmacol 19:443–447

    Article  PubMed  CAS  Google Scholar 

  • Chin J, Sternin O, Wu HB, Fletcher H, Perrotti LI, Jenab S, Quinones-Jenab V (2001) Sex differences in cocaine-induced behavioral sensitization. Cell Mol Biol (Noisy-le-grand) 47:1089–1095

    CAS  Google Scholar 

  • Chin J, Sternin O, Wu HB, Burrell S, Lu D, Jenab S, Perrotti LI, Quinones-Jenab V (2002) Endogenous gonadal hormones modulate behavioral and neurochemical responses to acute and chronic cocaine administration. Brain Res 945:123–130

    Article  PubMed  CAS  Google Scholar 

  • Coulter CL, Happe HK, Murrin LC (1997) Dopamine transporter development in postnatal rat striatum: an autoradiographic study with [3H]WIN 35,428. Brain Res Dev Brain Res 104:55–62

    Article  PubMed  CAS  Google Scholar 

  • Craft RM, Stratmann JA (1996) Discriminative stimulus effects of cocaine in female versus male rats. Drug Alcohol Depend 42:27–37

    Article  PubMed  CAS  Google Scholar 

  • Festa ED, Russo SJ, Gazi FM, Niyomchai T, Kemen LM, Lin SN, Foltz R, Jenab S, Quinones-Jenab V (2004) Sex differences in cocaine-induced behavioral responses, pharmacokinetics, and monoamine levels. Neuropharmacology 46:672–687

    Article  PubMed  CAS  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    Article  PubMed  CAS  Google Scholar 

  • Glick SD, Hinds PA (1984) Sex differences in sensitization to cocaine-induced rotation. Eur J Pharmacol 99:119–121

    Article  PubMed  CAS  Google Scholar 

  • Glick SD, Hinds PA, Shapiro RM (1983) Cocaine-induced rotation: sex-dependent differences between left- and right-sided rats. Science 221:775–777

    Article  PubMed  CAS  Google Scholar 

  • Goeders NE, Guerin GF (1996) Role of corticosterone in intravenous cocaine self-administration in rats. Neuroendocrinology 64:337–348

    Article  PubMed  CAS  Google Scholar 

  • Griffin ML, Weiss RD, Mirin SM, Lange U (1989) A comparison of male and female cocaine abusers. Arch Gen Psychiatry 46:122–126

    Article  PubMed  CAS  Google Scholar 

  • Harris RB, Zhou J, Youngblood BD, Rybkin II, Smagin GN, Ryan DH (1998) Effect of repeated stress on body weight and body composition of rats fed low- and high-fat diets. Am J Physiol 275:R1928–R1938

    PubMed  CAS  Google Scholar 

  • Henry DJ, White FJ (1995) The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J Neurosci 15:6287–6299

    PubMed  CAS  Google Scholar 

  • Hope BT, Simmons DE, Mitchell TB, Kreuter JD, Mattson BJ (2006) Cocaine-induced locomotor activity and Fos expression in nucleus accumbens are sensitized for 6 months after repeated cocaine administration outside the home cage. Eur J Neurosci 24:867–875

    Article  PubMed  Google Scholar 

  • Institute of Laboratory Animal Resources (1996) Guide for the care and use of laboratory animals, 7th edn. Institute of Laboratory Animal Resources, Commission on Life Sciences, National Research Council, Washington DC

  • Izenwasser S, French D, Carroll FI, Kunko PM (1999) Continuous infusion of selective dopamine uptake inhibitors or cocaine produces time-dependent changes in rat locomotor activity. Behav Brain Res 99:201–208

    Article  PubMed  CAS  Google Scholar 

  • Jackson LR, Robinson TE, Becker JB (2006) Sex differences and hormonal influences on acquisition of cocaine self-administration in rats. Neuropsychopharmacology 31:129–138

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1993a) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci 13:266–275

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1993b) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J Neurosci 13:276–284

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kandel D, Chen K, Warner LA, Kessler RC, Grant B (1997) Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the U.S. population. Drug Alcohol Depend 44:11–29

    Article  PubMed  CAS  Google Scholar 

  • Kita K, Shiratani T, Takenouchi K, Fukuzako H, Takigawa M (1999) Effects of D1 and D2 dopamine receptor antagonists on cocaine-induced self-stimulation and locomotor activity in rats. Eur Neuropsychopharmacol 9:1–7

    Article  PubMed  CAS  Google Scholar 

  • Kosten TA, Gawin FH, Kosten TR, Rounsaville BJ (1993) Gender differences in cocaine use and treatment response. J Subst Abuse Treat 10:63–66

    Article  PubMed  CAS  Google Scholar 

  • Larson EB, Anker JJ, Gliddon LA, Fons KS, Carroll ME (2007) Effects of estrogen and progesterone on the escalation of cocaine self-administration in female rats during extended access. Exp Clin Psychopharmacol 15:461–471

    Article  PubMed  CAS  Google Scholar 

  • Lynch WJ, Carroll ME (1999) Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology (Berl) 144:77–82

    Article  CAS  Google Scholar 

  • Marinelli M, Le Moal M, Piazza PV (1996) Acute pharmacological blockade of corticosterone secretion reverses food restriction-induced sensitization of the locomotor response to cocaine. Brain Res 724:251–255

    Article  PubMed  CAS  Google Scholar 

  • McGuire BA, Baladi MG, France CP (2011) Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats. Eur J Pharmacol 658:156–159

    Article  PubMed  CAS  Google Scholar 

  • Mendelson JH, Mello NK (1986) Clinical investigations of drug effects in women. NIDA Res Monogr 65:21–30

    PubMed  CAS  Google Scholar 

  • Nestler EJ (1993) Cellular responses to chronic treatment with drugs of abuse. Crit Rev Neurobiol 7:23–39

    PubMed  CAS  Google Scholar 

  • Niyomchai T, Akhavan A, Festa ED, Lin SN, Lamm L, Foltz R, Quinones-Jenab V (2006) Estrogen and progesterone affect cocaine pharmacokinetics in female rats. Brain Res Bull 68:310–314

    Article  PubMed  CAS  Google Scholar 

  • Owens WA, Sevak RJ, Galici R, Chang X, Javors MA, Galli A, France CP, Daws LC (2005) Deficits in dopamine clearance and locomotion in hypoinsulinemic rats unmask novel modulation of dopamine transporters by amphetamine. J Neurochem 94:1402–1410

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Lockfeld A, Squillace KM, Contel NR (1981) Drug-environment interaction: context dependency of cocaine-induced behavioral sensitization. Life Sci 28:755–760

    Article  PubMed  CAS  Google Scholar 

  • Rabolli D, Martin RJ (1977) Effects of diet composition on serum levels of insulin, thyroxine, triiodothyronine, growth hormone, and corticosterone in rats. J Nutr 107:1068–1074

    PubMed  CAS  Google Scholar 

  • Rivest R, Falardeau P, Di Paolo T (1995) Brain dopamine transporter: gender differences and effect of chronic haloperidol. Brain Res 692:269–272

    Article  PubMed  CAS  Google Scholar 

  • Robbins SJ, Ehrman RN, Childress AR, O’Brien CP (1999) Comparing levels of cocaine cue reactivity in male and female outpatients. Drug Alcohol Depend 53:223–230

    Article  PubMed  CAS  Google Scholar 

  • Roberts DC, Bennett SA, Vickers GJ (1989) The estrous cycle affects cocaine self-administration on a progressive ratio schedule in rats. Psychopharmacology (Berl) 98:408–411

    Article  CAS  Google Scholar 

  • Sell SL, Scalzitti JM, Thomas ML, Cunningham KA (2000) Influence of ovarian hormones and estrous cycle on the behavioral response to cocaine in female rats. J Pharmacol Exp Ther 293:879–886

    PubMed  CAS  Google Scholar 

  • Shumsky JS, Shultz PL, Tonkiss J, Galler JR (1997) Effects of diet on sensitization to cocaine-induced stereotypy in female rats. Pharmacol Biochem Behav 58:683–688

    Article  PubMed  CAS  Google Scholar 

  • Smith MS, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96:219–226

    Article  PubMed  CAS  Google Scholar 

  • Spealman RD (1996) Dopamine D3 receptor agonists partially reproduce the discriminative stimulus effects of cocaine in squirrel monkeys. J Pharmacol Exp Ther 278:1128–1137

    PubMed  CAS  Google Scholar 

  • Stamp JA, Mashoodh R, van Kampen JM, Robertson HA (2008) Food restriction enhances peak corticosterone levels, cocaine-induced locomotor activity, and DeltaFosB expression in the nucleus accumbens of the rat. Brain Res 1204:94–101

    Article  PubMed  CAS  Google Scholar 

  • Steketee JD, Kalivas PW (2011) Drug wanting: behavioral sensitization and relapse to drug-seeking behavior. Pharmacol Rev 63:348–365

    Article  PubMed  CAS  Google Scholar 

  • Substance Abuse and Mental Health Services Administration (SAMHSA) (2011) Results from the 2010 national survey on drug use and health: summary of national findings (NSDUH Series H-41, HHS Publication No. (SMA) 11-4658). Rockville, MD

  • Tarazi FI, Tomasini EC, Baldessarini RJ (1998) Postnatal development of dopamine and serotonin transporters in rat caudate-putamen and nucleus accumbens septi. Neurosci Lett 254:21–24

    Article  PubMed  CAS  Google Scholar 

  • Teicher MH, Andersen SL, Hostetter JC (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res 89:167–172

    Article  PubMed  CAS  Google Scholar 

  • van Haaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39:923–927

    Article  PubMed  Google Scholar 

  • Vetter-O’Hagen CS, Spear LP (2011) Hormonal and physical markers of puberty and their relationship to adolescent-typical novelty-directed behavior. Dev Psychobiol. doi:10.1002/dev.20610

  • Walker QD, Rooney MB, Wightman RM, Kuhn CM (2000) Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry. Neuroscience 95:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Walker QD, Cabassa J, Kaplan KA, Li ST, Haroon J, Spohr HA, Kuhn CM (2001) Sex differences in cocaine-stimulated motor behavior: disparate effects of gonadectomy. Neuropsychopharmacology 25:118–130

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Paulus MP, Lorang MT, Koob GF (1992) Increases in extracellular dopamine in the nucleus accumbens by cocaine are inversely related to basal levels: effects of acute and repeated administration. J Neurosci 12:4372–4380

    PubMed  CAS  Google Scholar 

  • Zakharova E, Wade D, Izenwasser S (2009) Sensitivity to cocaine conditioned reward depends on sex and age. Pharmacol Biochem Behav 92:131–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CPF is supported by a Senior Scientist Award (KO5 DA17918).

Conflicts of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles P. France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baladi, M.G., Koek, W., Aumann, M. et al. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats. Psychopharmacology 222, 447–457 (2012). https://doi.org/10.1007/s00213-012-2663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2663-7

Keywords

Navigation