Skip to main content
Log in

Chronic cocaine exposure induces putamen glutamate and glutamine metabolite abnormalities in squirrel monkeys

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic cocaine exposure has been associated with progressive brain structural and functional changes. Clarifying mechanisms underlying cocaine's progressive brain effects may help in the development of effective cocaine abuse treatments.

Objectives

We used a controlled squirrel monkey model of chronic cocaine exposure (45 mg/kg/week for 9 months) combined with ultra-high magnetic field (9.4 T) proton magnetic resonance spectroscopy to prospectively measure putamen metabolite changes.

Methods

Proton metabolites were measured with a STEAM sequence, quantified with LCModel using a simulated basis set, and expressed as metabolite/total creatine (tCr) ratios.

Results

We found cocaine-induced time-dependent changes in putamen glutamate/tCr and glutamine/tCr metabolite ratios suggestive of altered glutamate compartmentalization, neurotransmission, and metabolism. By contrast, saline-treated monkeys exhibited no metabolite changes over time. The time course of cocaine-induced metabolite abnormalities we detected is consistent with the apparent time course of glutamate abnormalities identified in a cross-sectional study in human cocaine users, as well as with microdialysis findings in rodent models of repeated cocaine exposure.

Conclusions

Together, these findings suggests that this squirrel monkey model may be useful for characterizing glutamatergic changes associated with cocaine exposure and for determining efficacies of treatments designed to mitigate cocaine-induced glutamatergic system dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ardila A, Rosselli M, Strumwasser S (1991) Neuropsychological deficits in chronic cocaine abusers. Int J Neurosci 57:73–79

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Shen H, Kalivas PW (2002a) Cystine/glutamate exchange serves as the source for extracellular glutamate: modifications by repeated cocaine administration. Amino Acids 23:161–162

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002b) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Barroso-Moguel R, Villeda-Hernandez J, Mendez-Armenta M, Rios C (1997) Brain capillary lesions produced by cocaine in rats. Toxicol Lett 92:9–14

    Article  PubMed  CAS  Google Scholar 

  • Barroso-Moguel R, Mendez-Armenta M, Villeda-Hernandez J, Nava-Ruiz C, Santamaria A (2002) Brain lesions induced by chronic cocaine administration to rats. Progr Neuro Psychopharmacol Biol Psychiatr 26:59–63

    Article  CAS  Google Scholar 

  • Bauzo RM, Kimmel HL, Howell LL (2009) Interactions between the mGluR2/3 agonist, LY379268, and cocaine on in vivo neurochemistry and behavior in squirrel monkeys. Pharmacol Biochem Behav 94:204–210

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW, Katzung VM, Moreland VJ, Nixon SJ (1995) Neuropsychological performance of recently abstinent alcoholics and cocaine abusers. Drug Alcohol Depend 37:247–253

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2004) Functional effects of cocaine self-administration in primate brain regions regulating cardiovascular function. Neurosci Lett 370:201–205

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Smith HR, Nader MA, Porrino LJ (2005) Effects of chronic cocaine self-administration on norepinephrine transporters in the nonhuman primate brain. Psychopharmacology (Berl) 180:781–788

    Article  CAS  Google Scholar 

  • Beveridge TJ, Smith HR, Daunais JB, Nader MA, Porrino LJ (2006) Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci 23:3109–3118

    Article  PubMed  Google Scholar 

  • Bolla KI, Rothman R, Cadet JL (1999) Dose-related neurobehavioral effects of chronic cocaine use. J Neuropsychiatry Clin Neurosci 11:361–369

    PubMed  CAS  Google Scholar 

  • Bolla KI, Funderburk FR, Cadet JL (2000) Differential effects of cocaine and cocaine alcohol on neurocognitive performance. Neurology 54:2285–2292

    PubMed  CAS  Google Scholar 

  • Bradberry CW (2000) Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J Neurosci 20:7109–7115

    PubMed  CAS  Google Scholar 

  • Bradberry CW (2008) Comparison of acute and chronic neurochemical effects of cocaine and cocaine cues in rhesus monkeys and rodents: focus on striatal and cortical dopamine systems. Rev Neurosci 19:113–128

    Article  PubMed  Google Scholar 

  • Brecht ML, Huang D, Evans E, Hser YI (2008) Polydrug use and implications for longitudinal research: ten-year trajectories for heroin, cocaine, and methamphetamine users. Drug Alcohol Depend 96:193–201

    Article  PubMed  CAS  Google Scholar 

  • Carpenter KM, Hittner JB (1997) Cognitive impairment among the dually-diagnosed: substance use history and depressive symptom correlates. Addiction 92:747–759

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Mehringer CM, Ernst T, Melchor R, Myers H, Forney D, Satz P (1997) Neurochemical alterations in asymptomatic abstinent cocaine users: a proton magnetic resonance spectroscopy study. Biol Psychiatry 42:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Ernst T, Strickland T, Mehringer CM (1999) Gender effects on persistent cerebral metabolite changes in the frontal lobes of abstinent cocaine users. Am J Psychiatr 156:716–722

    PubMed  CAS  Google Scholar 

  • Chen K, Scheier LM, Kandel DB (1996) Effects of chronic cocaine use on physical health: a prospective study in a general population sample. Drug Alcohol Depend 43:23–37

    Article  PubMed  CAS  Google Scholar 

  • Christensen JD, Kaufman MJ, Frederick B, Rose SL, Moore CM, Lukas SE, Mendelson JH, Cohen BM, Renshaw PF (2000) Proton magnetic resonance spectroscopy of human basal ganglia: response to cocaine administration. Biol Psychiatry 48:685–692

    Article  PubMed  CAS  Google Scholar 

  • Colzato LS, van den Wildenberg WP, Hommel B (2007) Impaired inhibitory control in recreational cocaine users. PLoS ONE 2:e1143

    Article  PubMed  Google Scholar 

  • Cunningham EE, Venuto RC, Zielezny MA (1984) Adulterants in heroin/cocaine: implications concerning heroin-associated nephropathy. Drug Alcohol Depend 14:19–22

    Article  PubMed  CAS  Google Scholar 

  • Czoty PW, Justice JB Jr, Howell LL (2000) Cocaine-induced changes in extracellular dopamine determined by microdialysis in awake squirrel monkeys. Psychopharmacology (Berl) 148:299–306

    Article  CAS  Google Scholar 

  • Daunais JB, Nader MA, Porrino LJ (1997) Long-term cocaine self-administration decreases striatal preproenkephalin mRNA in rhesus monkeys. Pharmacol Biochem Behav 57:471–475

    Article  PubMed  CAS  Google Scholar 

  • Fagergren P, Smith HR, Daunais JB, Nader MA, Porrino LJ, Hurd YL (2003) Temporal upregulation of prodynorphin mRNA in the primate striatum after cocaine self-administration. Eur J Neurosci 17:2212–2218

    Article  PubMed  CAS  Google Scholar 

  • Febo M, Segarra AC, Nair G, Schmidt K, Duong TQ, Ferris CF (2005) The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology 30:936–943

    Article  PubMed  CAS  Google Scholar 

  • Freeman WM, Nader MA, Nader SH, Robertson DJ, Gioia L, Mitchell SM, Daunais JB, Porrino LJ, Friedman DP, Vrana KE (2001) Chronic cocaine-mediated changes in non-human primate nucleus accumbens gene expression. J Neurochem 77:542–549

    Article  PubMed  CAS  Google Scholar 

  • George O, Mandyam CD, Wee S, Koob GF (2008) Extended access to cocaine self-administration produces long-lasting prefrontal cortex-dependent working memory impairments. Neuropsychopharmacology 33:2474–2482

    Article  PubMed  CAS  Google Scholar 

  • Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Seaquist ER, Kim S, Ugurbil K (1998) Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 20:380–388

    Article  PubMed  CAS  Google Scholar 

  • Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI (1997) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology (Berl) 133:7–16

    Article  CAS  Google Scholar 

  • Kalivas PW, Lalumiere RT, Knackstedt L, Shen H (2009) Glutamate transmission in addiction. Neuropharmacology 56(Suppl 1):169–173

    Article  PubMed  CAS  Google Scholar 

  • Kaufman MJ, Levin JM, Ross MH, Lange N, Rose SL, Kukes TJ, Mendelson JH, Lukas SE, Cohen BM, Renshaw PF (1998) Cocaine-induced cerebral vasoconstriction detected in humans with magnetic resonance angiography. JAMA 279:376–380

    Article  PubMed  CAS  Google Scholar 

  • Ke Y, Streeter CC, Nassar LE, Sarid-Segal O, Hennen J, Yurgelun-Todd DA, Awad LA, Rendall MJ, Gruber SA, Nason A, Mudrick MJ, Blank SR, Meyer AA, Knapp C, Ciraulo DA, Renshaw PF (2004) Frontal lobe GABA levels in cocaine dependence: a two-dimensional, J-resolved magnetic resonance spectroscopy study. Psychiatr Res 130:283–293

    Article  CAS  Google Scholar 

  • Kimmel HL, Ginsburg BC, Howell LL (2005) Changes in extracellular dopamine during cocaine self-administration in squirrel monkeys. Synapse 56:129–134

    Article  PubMed  CAS  Google Scholar 

  • Klatt EC, Montgomery S, Namiki T, Noguchi TT (1986) Misrepresentation of stimulant street drugs: a decade of experience in an analysis program. J Toxicol Clin Toxicol 24:441–450

    Article  PubMed  CAS  Google Scholar 

  • Knackstedt LA, Melendez RI, Kalivas PW (2010) Ceftriaxone restores glutamate homeostasis and prevents relapse to cocaine seeking. Biol Psychiatry 67:81–84

    Article  PubMed  CAS  Google Scholar 

  • Lecca D, Cacciapaglia F, Valentini V, Acquas E, Di Chiara G (2007) Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in the rat. Psychopharmacology (Berl) 191:653–667

    Article  CAS  Google Scholar 

  • Lee DK, Bian S, Rahman MA, Shim YB, Shim I, Choe ES (2008) Repeated cocaine administration increases N-methyl-d-aspartate NR1 subunit, extracellular signal-regulated kinase and cyclic AMP response element-binding protein phosphorylation and glutamate release in the rat dorsal striatum. Eur J Pharmacol 590:157–162

    Article  PubMed  CAS  Google Scholar 

  • Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21:2799–2807

    PubMed  CAS  Google Scholar 

  • Li SJ, Wang Y, Pankiewicz J, Stein EA (1999) Neurochemical adaptation to cocaine abuse: reduction of N-acetyl aspartate in thalamus of human cocaine abusers. Biol Psychiatry 45:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Matochik JA, Cadet JL, London ED (1998) Smaller volume of prefrontal lobe in polysubstance abusers: a magnetic resonance imaging study. Neuropsychopharmacology 18:243–252

    Article  PubMed  CAS  Google Scholar 

  • Lyons D, Friedman DP, Nader MA, Porrino LJ (1996) Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys. J Neurosci 16:1230–1238

    PubMed  CAS  Google Scholar 

  • Macey DJ, Smith HR, Nader MA, Porrino LJ (2003) Chronic cocaine self-administration upregulates the norepinephrine transporter and alters functional activity in the bed nucleus of the stria terminalis of the rhesus monkey. J Neurosci 23:12–16

    PubMed  CAS  Google Scholar 

  • Matochik JA, London ED, Eldreth DA, Cadet JL, Bolla KI (2003) Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 19:1095–1102

    Article  PubMed  Google Scholar 

  • Meyerhoff DJ, Bloomer C, Schuff N, Ezekiel F, Norman D, Clark W, Weiner MW, Fein G (1999) Cortical metabolite alterations in abstinent cocaine and cocaine/alcohol-dependent subjects: proton magnetic resonance spectroscopic imaging. Addiction Biol 4:405–419

    Article  CAS  Google Scholar 

  • Miguens M, Del Olmo N, Higuera-Matas A, Torres I, Garcia-Lecumberri C, Ambrosio E (2008) Glutamate and aspartate levels in the nucleus accumbens during cocaine self-administration and extinction: a time course microdialysis study. Psychopharmacology (Berl) 196:303–313

    Article  CAS  Google Scholar 

  • Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP (1998a) Effect of cocaine self-administration on dopamine D2 receptors in rhesus monkeys. Synapse 30:88–96

    Article  PubMed  CAS  Google Scholar 

  • Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP (1998b) Effect of cocaine self-administration on striatal dopamine D1 receptors in rhesus monkeys. Synapse 28:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nader MA, Daunais JB, Moore T, Nader SH, Moore RJ, Smith HR, Friedman DP, Porrino LJ (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology 27:35–46

    Article  PubMed  CAS  Google Scholar 

  • Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, Ehrenkaufer R, Mach RH (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Neiman J, Haapaniemi HM, Hillbom M (2000) Neurological complications of drug abuse: pathophysiological mechanisms. Eur J Neurol 7:595–606

    Article  PubMed  CAS  Google Scholar 

  • O'Malley S, Adamse M, Heaton RK, Gawin FH (1992) Neuropsychological impairment in chronic cocaine abusers. Am J Drug Alcohol Abuse 18:131–144

    Article  PubMed  Google Scholar 

  • O'Neill J, Cardenas VA, Meyerhoff DJ (2001) Separate and interactive effects of cocaine and alcohol dependence on brain structures and metabolites: quantitative MRI and proton MR spectroscopic imaging. Addiction Biol 6:347–361

    Article  Google Scholar 

  • Pascual-Leone A, Dhuna A, Anderson DC (1991) Longterm neurological complications of chronic, habitual cocaine abuse. Neurotoxicology 12:393–400

    PubMed  CAS  Google Scholar 

  • Platt DM, Rowlett JK, Spealman RD (2008) Attenuation of cocaine self-administration in squirrel monkeys following repeated administration of the mGluR5 antagonist MPEP: comparison with dizocilpine. Psychopharmacology (Berl) 200:167–176

    Article  CAS  Google Scholar 

  • Porrino LJ, Lyons D, Miller MD, Smith HR, Friedman DP, Daunais JB, Nader MA (2002) Metabolic mapping of the effects of cocaine during the initial phases of self-administration in the nonhuman primate. J Neurosci 22:7687–7694

    PubMed  CAS  Google Scholar 

  • Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24:3554–3562

    Article  PubMed  CAS  Google Scholar 

  • Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  • Regier DA, Farmer ME, Rae DS, Locke BZ, Keith SJ, Judd LL, Goodwin FK (1990) Comorbidity of mental disorders with alcohol and other drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study. JAMA 264:2511–2518

    Article  PubMed  CAS  Google Scholar 

  • Rosselli M, Ardila A (1996) Cognitive effects of cocaine and polydrug abuse. J Clin Exp Neuropsychol 18:122–135

    Article  PubMed  CAS  Google Scholar 

  • Sari Y, Smith KD, Ali PK, Rebec GV (2009) Upregulation of GLT1 attenuates cue-induced reinstatement of cocaine-seeking behavior in rats. J Neurosci 29:9239–9243

    Article  PubMed  CAS  Google Scholar 

  • Schindler CW, Zheng JW, Goldberg SR (2001) Effects of cocaine and cocaine metabolites on cardiovascular function in squirrel monkeys. Eur J Pharmacol 431:53–59

    Article  PubMed  CAS  Google Scholar 

  • Sim ME, Lyoo IK, Streeter CC, Covell J, Sarid-Segal O, Ciraulo DA, Kim MJ, Kaufman MJ, Yurgelun-Todd DA, Renshaw PF (2007) Cerebellar gray matter volume correlates with duration of cocaine use in cocaine-dependent subjects. Neuropsychopharmacology 32:2229–2237

    Article  PubMed  CAS  Google Scholar 

  • Smith LM, Chang L, Yonekura ML, Gilbride K, Kuo J, Poland RE, Walot I, Ernst T (2001) Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero. Pediatrics 107:227–231

    Article  PubMed  CAS  Google Scholar 

  • Soher BJ, Young K, Bernstein A, Aygula Z, Maudsley AA (2007) GAVA: spectral simulation for in vivo MRS applications. J Magn Reson 185:291–299

    Article  PubMed  CAS  Google Scholar 

  • Streeter CC, Hennen J, Ke Y, Jensen JE, Sarid-Segal O, Nassar LE, Knapp C, Meyer AA, Kwak T, Renshaw PF, Ciraulo DA (2005) Prefrontal GABA levels in cocaine-dependent subjects increase with pramipexole and venlafaxine treatment. Psychopharmacology (Berl) 182:516–526

    Article  CAS  Google Scholar 

  • Suto N, Ecke LE, You ZB, Wise RA (2010) Extracellular fluctuations of dopamine and glutamate in the nucleus accumbens core and shell associated with lever-pressing during cocaine self-administration, extinction, and yoked cocaine administration. Psychopharmacology (Berl) 211:267–275

    Article  CAS  Google Scholar 

  • Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41:649–656

    Article  PubMed  CAS  Google Scholar 

  • Waddell KW, Avison MJ, Joers JM, Gore JC (2007) A practical guide to robust detection of GABA in human brain by J-difference spectroscopy at 3 T using a standard volume coil. Magn Reson Imaging 25:1032–1038

    Article  PubMed  CAS  Google Scholar 

  • Winsauer PJ, Moerschbaecher JM, Molina PE, Roussell AM (2003) Contingent and noncontingent cocaine administration in rhesus monkeys: a comparison of the effects on the acquisition and performance of response sequences. Behav Pharmacol 14:295–306

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Steketee JD (2008) Repeated exposure to cocaine alters the modulation of mesocorticolimbic glutamate transmission by medial prefrontal cortex Group II metabotropic glutamate receptors. J Neurochem 107:186–196

    Article  PubMed  CAS  Google Scholar 

  • Yablonsky-Alter E, Agovic MS, Gashi E, Lidsky TI, Friedman E, Banerjee SP (2009) Cocaine challenge enhances release of neuroprotective amino acid taurine in the striatum of chronic cocaine treated rats: a microdialysis study. Brain Res Bull 79:215–218

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Salmeron BJ, Ross TJ, Xi ZX, Stein EA, Yang Y (2009) Lower glutamate levels in rostral anterior cingulate of chronic cocaine users - A (1)H-MRS study using TE-averaged PRESS at 3 T with an optimized quantification strategy. Psychiatr Res 174:171–176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the Counter-Drug Technology Assessment Center (CTAC), an office within the Office of National Drug Control Policy (ONDCP), via Contract Number DABK39-03-C-0075 awarded by the Army Contracting Agency. The content of the information does not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred. This project also was sponsored in part by NIH grants S10RR019356, R01DA09448, and K02DA017324, by a grant from Varian, Inc., and by gifts from John and Virginia B. Taplin. We thank Nicolas Bolo, Amy C. Janes, and Bonnie Adams for their assistance with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Jensen, J.E., Gillis, T.E. et al. Chronic cocaine exposure induces putamen glutamate and glutamine metabolite abnormalities in squirrel monkeys. Psychopharmacology 217, 367–375 (2011). https://doi.org/10.1007/s00213-011-2292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-011-2292-6

Keywords

Navigation