Skip to main content
Log in

Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Tardive dyskinesia (TD) has a pharmacogenetic component in which the interaction of antipsychotic exposure with individual genetic variation mediates risk. The glial cell line-derived neurotrophic factor (GDNF) signalling pathway has been associated with neuroprotective effects in central dopaminergic neurons and spinal motor neurons. Clinical trials have also investigated whether GDNF may ameliorate Parkinson’s disease symptoms.

Methods

We tested whether variants in the GDNF receptor alpha 2 (GFRA2) gene could play a role in TD susceptibility evaluating 16 variants in 172 Caucasian schizophrenia subjects.

Results

We observed one significant allelic association (rs4739285, permuted p = 0.042) and two genotypic associations: rs4739285 under additive inheritance model and rs4739217 under dominant inheritance model (permuted p = 0.044). Moreover, carriers of the major alleles for both rs6587002 and rs4739217 presented significantly higher risk for TD (OR = 2.04, permuted p = 0.014), while subjects with the minor allele for rs4739217 and the major allele for rs6988470 were less likely to have TD (OR = 0.21, permuted p = 0.0007).

Discussion

Haplotype results indicate that the minor allele of the rs4739217 is a risk factor for TD (permuted allelic p = 0.074). Age was also a risk factor for TD in our sample (p = 0.0001). Taken together, our findings suggest that GFRA2 genetic variants and age may play a role in TD susceptibility, but further work is required to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  • Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 7:405–411

    Article  CAS  PubMed  Google Scholar 

  • Barker RA (2006) Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol 5:285–286

    Article  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bespalov MM, Saarma M (2007) GDNF family receptor complexes are emerging drug targets. Trends Pharmacol Sci 28:68–74

    Article  CAS  PubMed  Google Scholar 

  • Borrego S, Fernandez RM, Dziema H et al (2003) Investigation of germline GFRA4 mutations and evaluation of the involvement of GFRA1, GFRA2, GFRA3, and GFRA4 sequence variants in Hirschsprung disease. J Med Genet 40:e18

    Article  CAS  PubMed  Google Scholar 

  • Bourgeois M (1977) Tardive Dyskinesia induced by neuroleptics: a survey of 3140 patients in a psychiatric hospital. Encephale 3:299–320

    CAS  PubMed  Google Scholar 

  • Carlsson A, Carlsson ML (2008) Adaptive properties and heterogeneity of dopamine D(2) receptors—pharmacological implications. Brain Res Rev 58:374–378

    Article  CAS  PubMed  Google Scholar 

  • Casey DE (2004) Pathophysiology of antipsychotic drug-induced movement disorders. J Clin Psychiatry 65(Suppl 9):25–28

    CAS  PubMed  Google Scholar 

  • Cass WA, Manning MW (1999) GDNF protection against 6-OHDA-induced reductions in potassium-evoked overflow of striatal dopamine. J Neurosci 19:1416–1423

    CAS  PubMed  Google Scholar 

  • Cass WA, Peters LE (2010) Neurturin effects on nigrostriatal dopamine release and content: comparison with GDNF. Neurochem Res

  • Durrant C, Zondervan KT, Cardon LR et al (2004) Linkage disequilibrium mapping via cladistic analysis of single-nucleotide polymorphism haplotypes. Am J Hum Genet 75:35–43

    Article  CAS  PubMed  Google Scholar 

  • Faurbye A, Rasch PJ, Petersen PB, Brandborg G, Pakkenberg H (1964) Neurological symptoms in pharmacotherapy of psychoses. Acta Psychiatr Scand 40:10–27

    Article  CAS  PubMed  Google Scholar 

  • Fjord-Larsen L, Johansen JL, Kusk P et al (2005) Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified Neurturin construct. Exp Neurol 195:49–60

    Article  CAS  PubMed  Google Scholar 

  • Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21:35–50

    Article  PubMed  Google Scholar 

  • Gimm O, Dziema H, Brown J et al (2001) Over-representation of a germline variant in the gene encoding RET co-receptor GFRalpha-1 but not GFRalpha-2 or GFRalpha-3 in cases with sporadic medullary thyroid carcinoma. Oncogene 20:2161–2170

    Article  CAS  PubMed  Google Scholar 

  • Go CL, Rosales RL, Caraos RJ, Fernandez HH (2009) The current prevalence and factors associated with tardive dyskinesia among Filipino schizophrenic patients. Parkinsonism Relat Disord 15:655–659

    Article  PubMed  Google Scholar 

  • Grondin R, Gash DM (1998) Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol 245:P35–P42

    Article  CAS  PubMed  Google Scholar 

  • Heuckeroth RO, Enomoto H, Grider JR et al (1999) Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory, and parasympathetic neurons. Neuron 22:253–263

    Article  CAS  PubMed  Google Scholar 

  • Hisaoka K, Nishida A, Koda T et al (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 79:25–34

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Mukhida K, Mendez I (2008) GDNF therapy for Parkinson’s disease. Expert Rev Neurother 8:1125–1139

    Article  CAS  PubMed  Google Scholar 

  • Huang RS, Duan S, Bleibel WK et al (2007) A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proc Natl Acad Sci U S A 104:9758–9763

    Article  CAS  PubMed  Google Scholar 

  • Hudson J, Granholm AC, Gerhardt GA et al (1995) Glial cell line-derived neurotrophic factor augments midbrain dopaminergic circuits in vivo. Brain Res Bull 36:425–432

    Article  CAS  PubMed  Google Scholar 

  • Kramer ER, Aron L, Ramakers GM et al (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39

    Article  PubMed  Google Scholar 

  • Lang AE, Gill S, Patel NK et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466

    Article  CAS  PubMed  Google Scholar 

  • Lavedan C, Licamele L, Volpi S et al (2009) Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry 14:804–819

    Article  CAS  PubMed  Google Scholar 

  • Lewis CM, Levinson DF, Wise LH et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73:34–48

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  PubMed  Google Scholar 

  • Nanobashvili A, Airaksinen MS, Kokaia M et al (2000) Development and persistence of kindling epilepsy are impaired in mice lacking glial cell line-derived neurotrophic factor family receptor alpha 2. Proc Natl Acad Sci U S A 97:12312–12317

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Kuno S, Inoue S et al (2010) The effect of dopamine agonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J Neurol Sci

  • Oo TF, Kholodilov N, Burke RE (2003) Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 23:5141–5148

    CAS  PubMed  Google Scholar 

  • Remington G (2007) Tardive dyskinesia: eliminated, forgotten, or overshadowed? Curr Opin Psychiatry 20:131–137

    Article  PubMed  Google Scholar 

  • Rossi J, Luukko K, Poteryaev D et al (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22:243–252

    Article  CAS  PubMed  Google Scholar 

  • Schooler NR, Kane JM (1982) Research diagnoses for tardive dyskinesia. Arch Gen Psychiatry 39:486–487

    CAS  PubMed  Google Scholar 

  • Shao Z, Dyck LE, Wang H, Li XM (2006) Antipsychotic drugs cause glial cell line-derived neurotrophic factor secretion from C6 glioma cells. J Psychiatry Neurosci 31:32–37

    PubMed  Google Scholar 

  • Soler RM, Dolcet X, Encinas M et al (1999) Receptors of the glial cell line-derived neurotrophic factor family of neurotrophic factors signal cell survival through the phosphatidylinositol 3-kinase pathway in spinal cord motoneurons. J Neurosci 19:9160–9169

    CAS  PubMed  Google Scholar 

  • Souza RP, Romano-Silva MA, Lieberman JA et al (2008) Association study of GSK3 gene polymorphisms with schizophrenia and clozapine response. Psychopharmacology (Berl) 200:177–186

    Article  CAS  Google Scholar 

  • Souza RP, de Luca V, Meltzer HY, Lieberman JA, Kennedy JL (2010a) Influence of serotonin 3A and 3B receptor genes on clozapine treatment response in schizophrenia. Pharmacogenet Genomics 20:274–276

    Google Scholar 

  • Souza RP, Romano-Silva MA, Lieberman JA et al (2010b) Genetic association of the GDNF alpha-receptor genes with schizophrenia and clozapine response. J Psychiatr Res

  • Tenback DE, van Harten PN, van Os J (2009) Non-therapeutic risk factors for onset of tardive dyskinesia in schizophrenia: a meta-analysis. Mov Disord 24:2309–2315

    PubMed  Google Scholar 

  • Thelma B, Srivastava V, Tiwari AK (2008) Genetic underpinnings of tardive dyskinesia: passing the baton to pharmacogenetics. Pharmacogenomics 9:1285–1306

    Article  CAS  PubMed  Google Scholar 

  • Tsai HT, Caroff SN, Miller DD et al (2009) A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial. Am J Med Genet B Neuropsychiatr Genet

  • Vanhorne JB, Gimm O, Myers SM et al (2001) Cloning and characterization of the human GFRA2 locus and investigation of the gene in Hirschsprung disease. Hum Genet 108:409–415

    Article  CAS  PubMed  Google Scholar 

  • Weinhold P, Wegner JT, Kane JM (1981) Familial occurrence of tardive dyskinesia. J Clin Psychiatry 42:165–166

    CAS  PubMed  Google Scholar 

  • Woods SW, Morgenstern H, Saksa JR et al (2010) Incidence of tardive dyskinesia with atypical versus conventional antipsychotic medications: a prospective cohort study. J Clin Psychiatry

  • Yassa R, Ananth J (1981) Familial tardive dyskinesia. Am J Psychiatry 138:1618–1619

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement/Conflict of interest

Canadian Institutes of Health Research (Grant #MOP-49525; Grant #200508GMH, Grant #GMH 79044; Postdoctoral Fellowship 93967 to Dr. Souza, and Clinician-Scientist Phase II fellowship to Dr. Wong). Dr. Souza reports having received a Wyeth/Canadian Institutes of Health Research partnered fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James L. Kennedy or Albert H. C. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, R.P., de Luca, V., Remington, G. et al. Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia. Psychopharmacology 210, 347–354 (2010). https://doi.org/10.1007/s00213-010-1829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1829-4

Keywords

Navigation