Skip to main content
Log in

Decreased reinforcing effects of cocaine following 2 weeks of continuous d-amphetamine treatment in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Recent studies have investigated d-amphetamine as a potential agonist medication for cocaine dependence. In rats, a 14-day continuous infusion of d-amphetamine via osmotic mini-pump has been shown to decrease cocaine-reinforced responding under a progressive ratio (PR) schedule of reinforcement.

Objectives

This study was designed to assess the influences of the d-amphetamine treatment dose and self-administered cocaine dose on the magnitude of this effect.

Materials and methods

Experiment 1: rats were trained to self-administer 1.5 mg/kg/inj cocaine under a PR schedule, then implanted with d-amphetamine mini-pumps for 14 days (days 1–7, 5 mg/kg/day; days 8–14, 7.5 mg/kg/day). Breakpoints were evaluated throughout the treatment period and 14 days post-treatment. Experiment 2: rats were trained to self-administer cocaine under a PR schedule and initial dose–response curves were determined before implantation of d-amphetamine mini-pumps. During the 14-day d-amphetamine (5 mg/kg/day) treatment period, rats self-administered one of four cocaine doses (0.19, 0.38, 0.75, or 1.5 mg/kg/inj). A post-treatment PR dose–response curve and responding under a fixed ratio 1 (FR1) schedule were evaluated after mini-pump removal.

Results

Experiment 1: breakpoints for 1.5 mg/kg/inj cocaine were unchanged by the increasing dose of d-amphetamine. Experiment 2: the PR dose–response curve was shifted downward after the treatment period in rats that had self-administered 0.19 and 0.38 mg/kg/inj cocaine. In contrast, rats in the 0.75 and 1.5 mg/kg/inj groups demonstrated increased rates of cocaine intake under an FR1 schedule after the treatment period.

Conclusions

These data suggest that continuous d-amphetamine treatment attenuates the reinforcing effects of cocaine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barrett AC, Miller JR, Dohrmann JM, Caine SB (2004) Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 47(Suppl 1):256–273

    Article  PubMed  CAS  Google Scholar 

  • Bonate PL, Swann A, Silverman PB (1997) Context-dependent cross-sensitization between cocaine and amphetamine. Life Sci 60:L1–L7

    Google Scholar 

  • Brebner K, Phelan R, Roberts DC (2000) Effect of baclofen on cocaine self-administration in rats reinforced under fixed-ratio 1 and progressive-ratio schedules. Psychopharmacology (Berl) 148:314–321

    Article  CAS  Google Scholar 

  • Caplehorn JR, Bell J, Kleinbaum DG, Gebski VJ (1993) Methadone dose and heroin use during maintenance treatment. Addiction 88:119–124

    Article  PubMed  CAS  Google Scholar 

  • Chiodo KA, Lack CM, Roberts DC (2008) Cocaine self-administration reinforced on a progressive ratio schedule decreases with continuous d-amphetamine treatment in rats. Psychopharmacology (Berl) 200:465–473

    Article  CAS  Google Scholar 

  • Cryan JF, Hoyer D, Markou A (2003) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry 54:49–58

    Article  PubMed  CAS  Google Scholar 

  • Des Jarlais DC (1995) Harm reduction—a framework for incorporating science into drug policy. Am J Public Health 85:10–12

    Article  PubMed  CAS  Google Scholar 

  • Dole VP, Nyswander ME, Kreek MJ (1966) Narcotic blockade. Arch Intern Med 118:304–309

    Article  PubMed  CAS  Google Scholar 

  • Eison MS, Eison AS, Iversen SD (1983) Two routes of continuous amphetamine administration induce different behavioral and neurochemical effects in the rat. Neurosci Lett 39:313–319

    Article  PubMed  CAS  Google Scholar 

  • Ellison G, Morris W (1981) Opposed stages of continuous amphetamine administration: parallel alterations in motor stereotypies and in vivo spiroperidol accumulation. Eur J Pharmacol 74:207–214

    Article  PubMed  CAS  Google Scholar 

  • Emmett-Oglesby MW, Lane JD (1992) Tolerance to the reinforcing effects of cocaine. Behav Pharmacol 3:193–200

    PubMed  CAS  Google Scholar 

  • Ferrario CR, Robinson TE (2007) Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior. Eur Neuropsychopharmacol 17:352–357

    Article  PubMed  CAS  Google Scholar 

  • Fiellin DA, Friedland GH, Gourevitch MN (2006) Opioid dependence: rationale for and efficacy of existing and new treatments. Clin Infect Dis 43(Suppl 4):S173–S177

    Article  PubMed  CAS  Google Scholar 

  • Fiore MC (2000) US public health service clinical practice guideline: treating tobacco use and dependence. Respir Care 45:1200–1262

    PubMed  CAS  Google Scholar 

  • Fleming PM, Roberts D (1994) Is the prescription of amphetamine justified as a harm reduction measure? J R Soc Health 114:127–131

    Article  PubMed  CAS  Google Scholar 

  • Grabowski J, Rhoades H, Schmitz J, Stotts A, Daruzska LA, Creson D, Moeller FG (2001) Dextroamphetamine for cocaine-dependence treatment: a double-blind randomized clinical trial. J Clin Psychopharmacol 21:522–526

    Article  PubMed  CAS  Google Scholar 

  • Grabowski J, Rhoades H, Stotts A, Cowan K, Kopecky C, Dougherty A, Moeller FG, Hassan S, Schmitz J (2004a) Agonist-like or antagonist-like treatment for cocaine dependence with methadone for heroin dependence: two double-blind randomized clinical trials. Neuropsychopharmacology 29:969–981

    Article  PubMed  CAS  Google Scholar 

  • Grabowski J, Shearer J, Merrill J, Negus SS (2004b) Agonist-like, replacement pharmacotherapy for stimulant abuse and dependence. Addict Behav 29:1439–1464

    Article  PubMed  Google Scholar 

  • Hammer RP Jr, Egilmez Y, Emmett-Oglesby MW (1997) Neural mechanisms of tolerance to the effects of cocaine. Behav Brain Res 84:225–239

    Article  PubMed  CAS  Google Scholar 

  • Horger BA, Giles MK, Schenk S (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology (Berl) 107:271–276

    Article  CAS  Google Scholar 

  • Hursh SR (1991) Behavioral economics of drug self-administration and drug abuse policy. J Exp Anal Behav 56:377–393

    Article  PubMed  CAS  Google Scholar 

  • Hursh SR, Galuska CM, Winger G, Woods JH (2005) The economics of drug abuse: a quantitative assessment of drug demand. Mol Interv 5:20–28

    Article  PubMed  Google Scholar 

  • Kokkinidis L (1984) Effects of chronic intermittent and continuous amphetamine administration on acoustic startle. Pharmacol Biochem Behav 20:367–371

    Article  PubMed  CAS  Google Scholar 

  • Kosten T, Owens SM (2005) Immunotherapy for the treatment of drug abuse. Pharmacol Ther 108:76–85

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ (2000) Methadone-related opioid agonist pharmacotherapy for heroin addiction. History, recent molecular and neurochemical research and future in mainstream medicine. Ann N Y Acad Sci 909:186–216

    Article  PubMed  CAS  Google Scholar 

  • Kreek MJ, Vocci FJ (2002) History and current status of opioid maintenance treatments: blending conference session. J Subst Abuse Treat 23:93–105

    Article  PubMed  Google Scholar 

  • Lett BT (1989) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berl) 98:357–362

    Article  CAS  Google Scholar 

  • Li SM, Campbell BL, Katz JL (2006) Interactions of cocaine with dopamine uptake inhibitors or dopamine releasers in rats discriminating cocaine. J Pharmacol Exp Ther 317:1088–1096

    Article  PubMed  CAS  Google Scholar 

  • Lynch WJ, Heaser WA, Carroll ME (1998) Effects of amphetamine, butorphanol, and morphine pretreatment on the maintenance and reinstatement of cocaine-reinforced responding. Exp Clin Psychopharmacol 6:255–263

    Article  PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Lodge BA (1991) Effects of chronic treatment of rats with "designer" amphetamines on brain regional monoamines. Can J Physiol Pharmacol 69:1825–1832

    PubMed  CAS  Google Scholar 

  • McLellan AT, Alterman AI (1991) Patient treatment matching: a conceptual and methodological review with suggestions for future research. NIDA Res Monogr 106:114–135

    PubMed  CAS  Google Scholar 

  • Mendrek A, Blaha CD, Phillips AG (1998) Pre-exposure of rats to amphetamine sensitizes self-administration of this drug under a progressive ratio schedule. Psychopharmacology (Berl) 135:416–422

    Article  CAS  Google Scholar 

  • Montoya ID, Vocci F (2008) Novel medications to treat addictive disorders. Curr Psychiatry Rep 10:392–398

    Article  PubMed  Google Scholar 

  • Negus SS (2003) Rapid assessment of choice between cocaine and food in rhesus monkeys: effects of environmental manipulations and treatment with d-amphetamine and flupenthixol. Neuropsychopharmacology 28:919–931

    PubMed  Google Scholar 

  • Negus SS, Mello NK (2003a) Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a progressive-ratio schedule in rhesus monkeys. Psychopharmacology (Berl) 167:324–332

    CAS  Google Scholar 

  • Negus SS, Mello NK (2003b) Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a second-order schedule in rhesus monkeys. Drug Alcohol Depend 70:39–52

    Article  PubMed  CAS  Google Scholar 

  • Nelson LR, Ellison G (1978) Enhanced stereotypies after repeated injections but not continuous amphetamines. Neuropharmacology 17:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Nielsen EB (1981) Rapid decline of stereotyped behavior in rats during constant one week administration of amphetamine via implanted ALZET osmotic minipumps. Pharmacol Biochem Behav 15:161–165

    Article  PubMed  CAS  Google Scholar 

  • Oleson EB, Roberts DC (2009) Behavioral economic assessment of price and cocaine consumption following self-administration histories that produce escalation of either final ratios or intake. Neuropsychopharmacology 34:796–804

    Article  PubMed  Google Scholar 

  • Orson FM, Kinsey BM, Singh RA, Wu Y, Gardner T, Kosten TR (2008) Substance abuse vaccines. Ann N Y Acad Sci 1141:257–269

    Article  PubMed  CAS  Google Scholar 

  • Peltier RL, Li DH, Lytle D, Taylor CM, Emmett-Oglesby MW (1996) Chronic d-amphetamine or methamphetamine produces cross-tolerance to the discriminative and reinforcing stimulus effects of cocaine. J Pharmacol Exp Ther 277:212–218

    PubMed  CAS  Google Scholar 

  • Richardson NR, Roberts DC (1991) Fluoxetine pretreatment reduces breaking points on a progressive ratio schedule reinforced by intravenous cocaine self-administration in the rat. Life Sci 49:833–840

    Article  PubMed  CAS  Google Scholar 

  • Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66:1–11

    Article  PubMed  CAS  Google Scholar 

  • Roberts DCS, Goeders NE (1989) Drug self-administration: experimental methods and determinants. In: Boulton AA, Baker GB, Greenshaw AJ (eds) Neuromethods: psychopharmacology, vol 13. Humana, Clifton, pp 349–398

    Google Scholar 

  • Roberts DC, Bennett SA, Vickers GJ (1989) The estrous cycle affects cocaine self-administration on a progressive ratio schedule in rats. Psychopharmacology (Berl) 98:408–411

    Article  CAS  Google Scholar 

  • Roberts DC, Andrews MM, Vickers GJ (1996) Baclofen attenuates the reinforcing effects of cocaine in rats. Neuropsychopharmacology 15:417–423

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Camp DM (1987) Long-lasting effects of escalating doses of d-amphetamine on brain monoamines, amphetamine-induced stereotyped behavior and spontaneous nocturnal locomotion. Pharmacol Biochem Behav 26:821–827

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Prisinzano TE, Newman AH (2008a) Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochem Pharmacol 75:2–16

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Blough BE, Baumann MH (2008b) Dopamine/serotonin releasers as medications for stimulant addictions. Prog Brain Res 172:385–406

    Article  PubMed  CAS  Google Scholar 

  • Rush CR, Stoops WW, Hays LR (2009) Cocaine effects during d-amphetamine maintenance: a human laboratory analysis of safety, tolerability and efficacy. Drug Alcohol Depend 99:261–271

    Article  PubMed  CAS  Google Scholar 

  • Ryan LJ, Linder JC, Martone ME, Groves PM (1990) Histological and ultrastructural evidence that d-amphetamine causes degeneration in neostriatum and frontal cortex of rats. Brain Res 518:67–77

    Article  PubMed  CAS  Google Scholar 

  • Schenk S, Partridge B (1999) Cocaine-seeking produced by experimenter-administered drug injections: dose–effect relationships in rats. Psychopharmacology (Berl) 147:285–290

    Article  CAS  Google Scholar 

  • Schenk S, Snow S, Horger BA (1991) Pre-exposure to amphetamine but not nicotine sensitizes rats to the motor activating effect of cocaine. Psychopharmacology (Berl) 103:62–66

    Article  CAS  Google Scholar 

  • Shearer J (2008) The principles of agonist pharmacotherapy for psychostimulant dependence. Drug Alcohol Rev 27:301–308

    Article  PubMed  Google Scholar 

  • Shearer J, Wodak A, van Beek I, Mattick RP, Lewis J (2003) Pilot randomized double blind placebo-controlled study of dexamphetamine for cocaine dependence. Addiction 98:1137–1141

    Article  PubMed  Google Scholar 

  • Shippenberg TS, Heidbreder C (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J Pharmacol Exp Ther 273:808–815

    PubMed  CAS  Google Scholar 

  • Shuster L, Yu G, Bates A (1977) Sensitization to cocaine stimulation in mice. Psychopharmacology (Berl) 52:185–190

    Article  CAS  Google Scholar 

  • Stead LF, Perera R, Bullen C, Mant D, Lancaster T (2008) Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev CD000146

  • Theeuwes F, Yum SI (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng 4:343–353

    Article  PubMed  CAS  Google Scholar 

  • Trafton JA, Minkel J, Humphreys K (2006) Determining effective methadone doses for individual opioid-dependent patients. PLoS Med 3:e80

    Article  PubMed  CAS  Google Scholar 

  • Vocci F, Ling W (2005) Medications development: successes and challenges. Pharmacol Ther 108:94–108

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. S. Roberts.

Additional information

Funding for this study was provided by Grants R01DA14030 and P50DA06634-14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiodo, K.A., Roberts, D.C.S. Decreased reinforcing effects of cocaine following 2 weeks of continuous d-amphetamine treatment in rats. Psychopharmacology 206, 447–456 (2009). https://doi.org/10.1007/s00213-009-1622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1622-4

Keywords

Navigation