Skip to main content
Log in

An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

An endocannabinoid signaling system has not been identified in hamsters.

Objective

We examined the existence of an endocannabinoid signaling system in Syrian hamsters using neuroanatomical, biochemical, and behavioral pharmacological approaches.

Materials and methods

The distribution of cannabinoid receptors was mapped, and membrane fatty-acid amide hydrolase (FAAH) activity and levels of fatty-acid amides were measured in hamster brain. The impact of cannabinoid CB1 receptor blockade and inhibition of FAAH was evaluated in the elevated plus maze, rota-rod test, and models of unconditioned and conditioned social defeat.

Results

A characteristic heterogeneous distribution of cannabinoid receptors was detected in hamster brain using [3H]CP55,940 binding and autoradiography. The FAAH inhibitor URB597 inhibited FAAH activity (IC50 = 12.8 nM) and elevated levels of fatty-acid amides (N-palmitoyl ethanolamine and N-oleoyl ethanolamine) in hamster brain. Anandamide levels were not reliably altered. The cannabinoid agonist WIN55,212-2 (1– 10 mg/kg i.p.) induced CB1-mediated motor ataxia. Blockade of CB1 with rimonabant (5 mg/kg i.p.) induced anxiogenic-like behavior in the elevated plus maze. URB597 (0.1–0.3 mg/kg i.p.) induced CB1-mediated anxiolytic-like effects in the elevated plus maze, similar to the benzodiazepine diazepam (2 mg/kg i.p.). Diazepam (2–6 mg/kg i.p.) suppressed the expression, but not the acquisition, of conditioned defeat. By contrast, neither URB597 (0.3–3.0 mg/kg i.p.) nor rimonabant (5 mg/kg i.p.) altered unconditioned or conditioned social defeat or rota-rod performance.

Conclusions

Endocannabinoids engage functional CB1 receptors in hamster brain to suppress anxiety-like behavior and undergo enzymatic hydrolysis catalyzed by FAAH. Our results further suggest that neither unconditioned nor conditioned social defeat in the Syrian hamster is dependent upon cannabinoid CB1 receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Acb:

nucleus accumbens

2-AG:

2-arachidonoylglycerol

CB1 :

cannabinoid receptor subtype 1

Cb:

cerebellum

CG:

central gray

CPu:

caudate putamen

Ent:

entorhinal cortex

EP:

endopeduncular nucleus

FAAH:

fatty-acid amide hydrolase

GP:

globus pallidus

Hi:

hippocampus

HPA:

hypothalamic–pituitary adrenal

LS:

lateral septum

MnR:

median raphe nucleus

OEA:

N-oleoyl ethanolamine

PEA:

N-palmitoyl ethanolamine

Pi:

pineal gland

SNR:

substantia nigra pars reticulate

Sol:

solitary n.

VL:

ventral thalamic nucleus

References

  • Akinshola BE, Chakrabarti A, Onaivi ES (1999) In-vitro and in-vivo action of cannabinoids. Neurochem Res 24:1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Arevalo C, de Miguel R, Hernandez-Tristan R (2001) Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters. Pharmacol Biochem Behav 70:123–131

    Article  PubMed  CAS  Google Scholar 

  • Azad SC, Eder M, Marsicano G, Lutz B, Zieglgansberger W, Rammes G (2003) Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn Mem 10:116–128

    Article  PubMed  Google Scholar 

  • Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 353:23–31

    Article  PubMed  CAS  Google Scholar 

  • Bortolato M, Mangieri RA, Fu J, Kim JH, Arguello O, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2007) Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress. Biol Psychiatry 62:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Carobrez AP, Bertoglio LJ (2005) Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 29:1193–205

    Article  PubMed  CAS  Google Scholar 

  • Compton DR, Rice KC, De Costa BR, Razdan RK, Melvin LS, Johnson MR, Martin BR (1993) Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activities. J Pharmacol Exp Ther 265:218–226

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376

    Article  PubMed  CAS  Google Scholar 

  • Degenhardt L, Hall W, Lynskey M (2001) The relationship between cannabis use, depression and anxiety among Australian adults: findings from the National Survey of Mental Health and Well-Being. Soc Psychiatry Psychiatr Epidemiol 36:219–227

    Article  PubMed  CAS  Google Scholar 

  • Desarnaud F, Cadas H, Piomelli D (1995) Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization. J Biol Chem 270:6030–6035

    Article  PubMed  CAS  Google Scholar 

  • Fegley D, Gaetani S, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J Pharmacol Exp Ther 313:352–358

    Article  PubMed  CAS  Google Scholar 

  • Giuffrida A, Rodriguez de Fonseca F, Piomelli D (2000) Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal Biochem 280:87–93

    Article  PubMed  CAS  Google Scholar 

  • Griebel G, Stemmelin J, Scatton B (2005) Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 57:261–267

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Bakos N, Szirmay M, Ledent C, Freund TF (2002) The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 16:1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C, Barna I, Freund TF (2004a) Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J Neurosci 19:1906–1912

    Article  PubMed  CAS  Google Scholar 

  • Haller J, Varga B, Ledent C, Freund TF (2004b) CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 15:299–304

    Article  PubMed  CAS  Google Scholar 

  • Hebert MA, Potegal M, Moore T, Evenson AR, Meyerhoff JL (1996) Diazepam enhances conditioned defeat in hamsters (Mesocricetus auratus). Pharmacol Biochem Behav 55:405–413

    Article  PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Jarrahian A (2005) Accumulation of anandamide: evidence for cellular diversity. Neuropharmacology 48:1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Hogg S (1996) A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav 54:21–30

    Article  PubMed  CAS  Google Scholar 

  • Hohmann AG, Herkenham M (1998) Regulation of cannabinoid and mu opioid receptor binding sites following neonatal capsaicin treatment. Neurosci Lett 252:13–16

    Article  PubMed  CAS  Google Scholar 

  • Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D (2005) An endocannabinoid mechanism for stress-induced analgesia. Nature 435:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Hohmann AG, Briley EM, Herkenham M (1999) Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res 822:17–25

    Article  PubMed  CAS  Google Scholar 

  • Jasnow AM, Huhman KL (2001) Activation of GABA(A) receptors in the amygdala blocks the acquisition and expression of conditioned defeat in Syrian hamsters. Brain Res 920:142–150

    Article  PubMed  CAS  Google Scholar 

  • Jasnow AM, Banks MC, Owens EC, Huhman KL (1999) Differential effects of two corticotropin-releasing factor antagonists on conditioned defeat in male Syrian hamsters (Mesocricetus auratus). Brain Res 846:122–128

    Article  PubMed  CAS  Google Scholar 

  • Jasnow AM, Shi C, Israel JE, Davis M, Huhman KL (2005) Memory of social defeat is facilitated by cAMP response element-binding protein overexpression in the amygdala. Behav Neurosci 119:1125–1130

    Article  PubMed  Google Scholar 

  • Jones N, King SM, Duxon MS (2002) Further evidence for the predictive validity of the unstable elevated exposed plus-maze, a behavioural model of extreme anxiety in rats: differential effects of fluoxetine and chlordiazepoxide. Behav Pharmacol 13:525–535

    PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  PubMed  CAS  Google Scholar 

  • Kreiskott H (1963) Zur Verhaltungsforschung im Rahmen der Psychopharmakologie. Medizin und Chemie, 7:177

  • Maccarrone M, Valverde O, Barbaccia ML, Castaänâe A, Maldonado R, Ledent C, Parmentier M, Finazzi-Agráo A (2002) Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur J Neurosci 15:1178–1186

    Article  PubMed  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225

    Article  PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    Article  PubMed  CAS  Google Scholar 

  • Moreira FA, Aguiar DC, Guimaraes FS (2006) Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuro-psychopharmacol Biol Psychiatry 30:1466–1471

    Article  CAS  Google Scholar 

  • Moreira FA, Kaiser N, Monory K, Lutz B (2008) Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology 54:141–150

    Article  PubMed  CAS  Google Scholar 

  • Naderi N, Haghparast A, Saber-Tehrani A, Rezaii N, Alizadeh AM, Khani A, Motamedi F (2008) Interaction between cannabinoid compounds and diazepam on anxiety-like behaviour of mice. Pharmacol Biochem Behav 89:64–75

    Article  PubMed  CAS  Google Scholar 

  • Ognibene E, Adriani W, Laviola G (2006) Anxiolytic and reward-related properties of URB597, a novel FAAH inhibitor, in CD1 mice. Anxiety disorders and anxiolytics—anxiety disorders (basic): S460

  • Onaivi ES, Green MR, Martin BR (1990) Pharmacological characterization of cannabinoids in the elevated plus maze. J Pharmacol Exp Ther 253:1002–1009

    PubMed  CAS  Google Scholar 

  • Patel S, Hillard CJ (2006) Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther 318:304–311

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ (2004) Endocannabinoid signaling negatively modulates stress-induced activation of the hypothalamic–pituitary–adrenal axis. Endocrinology 145:5431–5438

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 21:1057–1069

    Article  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–167

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  PubMed  CAS  Google Scholar 

  • Piomelli D, Tarzia G, Duranti A, Tontini A, Mor M, Compton TR, Dasse O, Monoghan EP, Parrott JA, Putman D (2006) Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev 12:21–38

    Article  PubMed  CAS  Google Scholar 

  • Potegal M, Huhman K, Moore T, Meyerhoff J (1993) Conditioned defeat in the Syrian golden hamster (Mesocricetus auratus). Behav Neural Biol 60:93–102

    Article  PubMed  CAS  Google Scholar 

  • Scherma M, Medalie J, Fratta W, Vadivel SK, Makriyannis A, Piomelli D, Mikics E, Haller J, Yasar S, Tanda G, Goldberg SR (2007) The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition. Neuropharmacology 54:129–140

    Article  PubMed  Google Scholar 

  • Suplita RL 2nd, Eisenstein SA, Neely MH, Moise AM, Hohmann AG (2008) Cross-sensitization and cross-tolerance between exogenous cannabinoid antinociception and endocannabinoid-mediated stress-induced analgesia. Neuropharmacology 54:161–171

    Article  PubMed  CAS  Google Scholar 

  • Treit D, Pinel JP, Fibiger HC (1981) Conditioned defensive burying: a new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15:619–626

    Article  PubMed  CAS  Google Scholar 

  • Valverde O, Ledent C, Beslot F, Parmentier M, Roques BP (2000) Reduction of stress-induced analgesia but not of exogenous opioid effects in mice lacking CB1 receptors. Eur J Neurosci 12:533–539

    Article  PubMed  CAS  Google Scholar 

  • Walfish S, Massey R, Krone A (1990) Anxiety and anger among abusers of different substances. Drug Alcohol Depend 25:253–256

    Article  PubMed  CAS  Google Scholar 

  • Yannielli PC, Kanterewicz BI, Cardinali DP (1996) Daily rhythms in spontaneous and diazepam-induced anxiolysis in Syrian hamsters. Pharmacol Biochem Behav 54:651–656

    Article  PubMed  CAS  Google Scholar 

  • Young LJ (2002) The neurobiology of social recognition, approach, and avoidance. Biol Psychiatry 51:18–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by DA021644, DA022702, and DA022478 (to AGH and DP). SE was supported by an Achievement Rewards for College Scientists (ARCS) graduate fellowship.

Conflict of interest statement

Daniele Piomelli is a consultant for Organon Biosciences and declares a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea G. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moise, A.M., Eisenstein, S.A., Astarita, G. et al. An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters. Psychopharmacology 200, 333–346 (2008). https://doi.org/10.1007/s00213-008-1209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1209-5

Keywords

Navigation