Skip to main content

Advertisement

Log in

Intracranial self-administration of MDMA into the ventral striatum of the rat: differential roles of the nucleus accumbens shell, core, and olfactory tubercle

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Behavioral and anatomical data suggest that the ventral striatum, consisting of the nucleus accumbens and olfactory tubercle, is functionally heterogeneous. Cocaine and d-amphetamine appear to be more rewarding when administered into the medial olfactory tubercle or medial accumbens shell than into their lateral counterparts, including the accumbens core.

Objectives

We sought to determine whether rats self-administer the popular recreational drug (±)-3,4-methylenedioxymethamphetamine (MDMA) into ventrostriatal subregions and whether the medial olfactory tubercle and medial accumbens shell mediate MDMA’s positive reinforcing effects more effectively than their lateral counterparts.

Results

Rats receiving 30 mM MDMA into the medial olfactory tubercle, medial accumbens shell, or accumbens core, but not the lateral tubercle or lateral shell, showed higher self-administration rates than rats receiving vehicle. The medial shell supported more vigorous self-administration of MDMA at higher concentrations than the core or medial olfactory tubercle. In addition, intra-medial shell MDMA self-administration was disrupted by co-administration of the D1 or D2 receptor antagonists SCH 23390 (1–3 mM) or raclopride (3–10 mM).

Conclusions

Our data suggest that the ventral striatum is functionally heterogeneous. The medial accumbens shell appears to be more important than other ventrostriatal subregions in mediating the positive reinforcing effects of MDMA via both D1- and D2-type receptors. Together with previous data, our data also suggest that unidentified actions of MDMA interfere with the positive reinforcing effects of dopamine in the medial olfactory tubercle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bari AA, Pierce RC (2005) D1-like and D2 dopamine receptor antagonists administered into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, reinforcement. Neuroscience 135:959–968

    Article  PubMed  CAS  Google Scholar 

  • Bossert JM, Poles GC, Wihbey KA, Koya E, Shaham Y (2007) Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J Neurosci 27:12655–12663

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Devine DP, Wise RA (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology 122:194–197

    Article  PubMed  CAS  Google Scholar 

  • Daniela E, Brennan K, Gittings D, Hely L, Schenk S (2004) Effect of SCH 23390 on (+/−)-3,4-methylenedioxymethamphetamine hyperactivity and self-administration in rats. Pharmacol Biochem Behav 77:745–750

    Article  PubMed  CAS  Google Scholar 

  • De La Garza R 2nd, Fabrizio KR, Gupta A (2007) Relevance of rodent models of intravenous MDMA self-administration to human MDMA consumption patterns. Psychopharmacology (Berl) 189:425–434

    Article  CAS  Google Scholar 

  • Fenu S, Spina L, Rivas E, Longoni R, Di Chiara G (2006) Morphine-conditioned single-trial place preference: role of nucleus accumbens shell dopamine receptors in acquisition, but not expression. Psychopharmacology (Berl) 187:143–153

    Article  CAS  Google Scholar 

  • Fibiger HC, Phillips AG (1986) Reward, motivation, cognition: psychobiology of mesotelencephalic dopamine systems. In: Mountcastle VB, Bloom FE, Geiger SR (eds) Handbook of physiology: vol. 4. The nervous system. American Physiological Society, Bethesda, pp 647–675

    Google Scholar 

  • Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI (2003) The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 55:463–508

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2003) Involvement of the olfactory tubercle in cocaine reward: intracranial self-administration studies. J Neurosci 23:9305–9311

    PubMed  CAS  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Sharpe LG (2001) A head-attachable device for injecting nanoliter volumes of drug solutions into brain sites of freely moving rats. J Neurosci Methods 110:135–140

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Wise RA (2004) Mapping of chemical trigger zones for reward. Neuropharmacology 47:190–201

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Glazier BS, Murphy JM, McBride WJ (1997) Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward. J Neurosci 17:8580–8587

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2005) The functional divide for primary reinforcement of D-amphetamine lies between the medial and lateral ventral striatum: is the division of the accumbens core, shell and olfactory tubercle valid. J Neurosci 25:5061–5065

    Article  PubMed  CAS  Google Scholar 

  • Ito R, Robbins TW, Everitt BJ (2004) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nat Neurosci 7:389–397

    Article  PubMed  CAS  Google Scholar 

  • Kankaanpaa A, Meririnne E, Lillsunde P, Seppala T (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav 59:1003–1009

    Article  PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    Article  PubMed  CAS  Google Scholar 

  • McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101:129–152

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2001) Human psychopharmacology of Ecstasy (MDMA): a review of 15 years of empirical research. Hum Psychopharmacol 16:557–577

    Article  PubMed  CAS  Google Scholar 

  • Parrott AC (2004) Is ecstasy MDMA? A review of the proportion of ecstasy tablets containing MDMA, their dosage levels, and the changing perceptions of purity. Psychopharmacology (Berl) 173:234–241

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier, Burlington

    Google Scholar 

  • Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse. Neurosci Biobehav Rev 30:215–238

    Article  PubMed  CAS  Google Scholar 

  • Pope HG Jr, Ionescu-Pioggia M, Pope KW (2001) Drug use and life style among college undergraduates: a 30-year longitudinal study. Am J Psychiatry 158:1519–1521

    Article  PubMed  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Li TK, Murphy JM, McBride WJ (2002) Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 303:1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39:32–41

    Article  PubMed  CAS  Google Scholar 

  • Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303

    PubMed  CAS  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006a) Characterization of dopamine-dependent rewarding and locomotor stimulant effects of intravenously-administered methylphenidate in rats. Neuroscience 141:1457–1468

    Article  PubMed  CAS  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006b) Evidence for multiple sites within rat ventral striatum mediating cocaine conditioned place preference and locomotor activation. J Pharmacol Exp Ther 317:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Spina L, Fenu S, Longoni R, Rivas E, Di Chiara G (2006) Nicotine-conditioned single-trial place preference: selective role of nucleus accumbens shell dopamine D1 receptors in acquisition. Psychopharmacology (Berl) 184:447–455

    Article  CAS  Google Scholar 

  • White SR, Obradovic T, Imel KM, Wheaton MJ (1996) The effects of methylenedioxymethamphetamine (MDMA, “Ecstasy”) on monoaminergic neurotransmission in the central nervous system. Prog Neurobiol 49:455–479

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94:469–492

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto BK, Spanos LJ (1988) The acute effects of methylenedioxymethamphetamine on dopamine release in the awake-behaving rat. Eur J Pharmacol 148:195–203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ikemoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, R., Qin, M., Liu, ZH. et al. Intracranial self-administration of MDMA into the ventral striatum of the rat: differential roles of the nucleus accumbens shell, core, and olfactory tubercle. Psychopharmacology 198, 261–270 (2008). https://doi.org/10.1007/s00213-008-1131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1131-x

Keywords

Navigation