Skip to main content
Log in

Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Methylphenidate (MPH) is a dopamine and noradrenaline enhancing drug used to treat attentional deficits. Understanding of its cognition-enhancing effects and the neurobiological mechanisms involved, especially in elderly people, is currently incomplete.

Objectives

The aim of this study was to investigate the relationship between MPH plasma levels and brain activation during visuospatial attention and movement preparation.

Methods

Twelve healthy elderly volunteers were scanned twice using functional magnetic resonance imaging (fMRI) after oral administration of MPH 20 mg or placebo in a within-subject design. The cognitive paradigm was a four-choice reaction time task presented at two levels of difficulty (with and without spatial cue). Plasma MPH levels were measured at six time points between 30 and 205 min after dosing. FMRI data were analysed using a linear model to estimate physiological response to the task and nonparametric permutation tests for inference.

Results

Lateral premotor and medial posterior parietal cortical activation was increased by MPH, on average, over both levels of task difficulty. There was considerable intersubject variability in the pharmacokinetics of MPH. Greater area under the plasma concentration-time curve was positively correlated with strength of activation in motor and premotor cortex, temporoparietal cortex and caudate nucleus during the difficult version of the task.

Conclusion

This is the first pharmacokinetic/pharmacodynamic study to find an association between plasma levels of MPH and its modulatory effects on brain activation measured using fMRI. The results suggest that catecholaminergic mechanisms may be important in brain adaptivity to task difficulty and in task-specific recruitment of spatial attention systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arnsten AFT, Robbins TW (2002) Neurochemical modulation of prefrontal function in humans and animals. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, New York, pp 51–84

    Google Scholar 

  • Arthurs OJ, Stephenson CM, Rice K, Lupson VC, Spiegelhalter DJ, Boniface SJ, Bullmore ET (2004) Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. NeuroImage 21:540–546

    Article  PubMed  CAS  Google Scholar 

  • Biederman J, Spencer T, Wilens T (2004) Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol 7:77–97

    Article  PubMed  CAS  Google Scholar 

  • Bilder RM, Volavka J, Lachman HM, Grace AA (2004) The catechol-O-methyltransferase polymorphism: relations to the tonic–phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29:1943–1961

    Article  PubMed  CAS  Google Scholar 

  • Brammer MJ, Bullmore ET, Simmons A, Williams SC, Grasby PM, Howard RJ, Woodruff PW, Rabe-Hesketh S (1997) Generic brain activation mapping in functional magnetic resonance imaging: a nonparametic approach. Magn Reson Imag 15:763–770

    Article  CAS  Google Scholar 

  • Braus DF, Brassen S, Weimer E, Tost H (2003) Functional magnetic resonance imaging of psychopharmacological brain effects: an update. Fortschr Neurol Psychiatr 71:72–83

    Article  PubMed  CAS  Google Scholar 

  • Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Büchel C (2003) Pharmacologically modulated fMRI: cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain 126:451–461

    Article  PubMed  CAS  Google Scholar 

  • Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans Med Imag 18:32–42

    Article  CAS  Google Scholar 

  • Bullmore E, Long C, Suckling J, Fadili J, Calvert G, Zelaya F, Carpenter TA, Brammer M (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78

    Article  PubMed  CAS  Google Scholar 

  • Bullmore E, Suckling J, Zelaya F, Long C, Honey G, Reed L, Routledge C, Ng V, Fletcher P, Brown J, Williams SC (2003) Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics. Cereb Cortex 13:144–154

    Article  PubMed  Google Scholar 

  • Chou WL (1978) Critical evaluation of the potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level–time curve. J Pharmacokinet Biopharm 6:539–547

    Article  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Enhanced or impaired cognitive function in Parkinson’s disease as a function of dopaminergic medication and task demands. Cereb Cortex 11:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Nobre AC, Frith CD (2001) The noradrenergic alpha2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb Cortex 11:73–84

    Article  PubMed  CAS  Google Scholar 

  • Cox RW (1994) Analysis of functional neuroimages, version 1.01. Medical College of Wisconsin, Milwaukee

    Google Scholar 

  • D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    Article  PubMed  CAS  Google Scholar 

  • Furey M, Pietrini P, Haxby JV (2000) Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290:2315–2319

    Article  PubMed  CAS  Google Scholar 

  • Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim Y-H, Meyer JR, Mesulam MM (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106

    Article  PubMed  Google Scholar 

  • Goerendt IK, Messa C, Lawrence AD, Grasby PM, Piccini P, Brooks DJ (2003) Dopamine release during sequential finger movements in health and Parkinson’s disease: a PET study. Brain 126:312–325

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS, Muly EC III, Williams GV (2000) D1 receptors in prefrontal cells and circuits. Brain Res Rev 31:295–301

    Article  PubMed  CAS  Google Scholar 

  • Greenhill L, Beyer DH, Finkleson J, Shaffer D, Biederman J, Conners CK, Gillberg C, Huss M, Jensen P, Kennedy JL, Klein R, Rapoport J, Sagvolden T, Spencer T, Swanson JM, Volkow N (2002) Guidelines and algorithms for the use of methylphenidate in children with attention-deficit hyperactivity disorder. J Atten Disord 6(Suppl 1):89–100

    Google Scholar 

  • Hershey T, Black KJ, Hartlein JM, Barch DM, Braver TS, Carl JL, Perlmutter JS (2004) Cognitive–pharmacologic functional magnetic resonance imaging in Tourette syndrome: a pilot study. Biol Psychiatry 55:916–925

    Article  PubMed  CAS  Google Scholar 

  • Honey G, Bullmore E (2004) Human pharmacological MRI. Trends Pharmacol Sci 25:366–374

    Article  PubMed  CAS  Google Scholar 

  • Honey GD, Suckling J, Zelaya F, Long C, Routledge C, Jackson S, Ng V, Fletcher PC, Williams SCR, Brown J, Bullmore ET (2003) Dopaminergic drug effects on physiological connectivity in a human cortico–striato–thalamic system. Brain 126:1767–1781

    Article  PubMed  CAS  Google Scholar 

  • Jahanshahi M, Brown RG, Marsden CD (1992) Simple and choice reaction time and the use of advance information for motor preparation in Parkinson’s disease. Brain 115:539–564

    Article  PubMed  Google Scholar 

  • Kaasinen V, Rinne JO (2002) Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev 26:785–793

    Article  PubMed  CAS  Google Scholar 

  • Keating GM, Figgitt DP (2002) Dexmethylphenidate. Drugs 62:1899–1904

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Mesulam MM (1999) The large-scale neural network for spatial attention displays multifunctional overlap but differential asymmetry. NeuroImage 9:269–277

    Article  PubMed  CAS  Google Scholar 

  • Kimberg DY, D’Esposito M (2003) Cognitive effects of the dopamine receptor agonist pergolide. Neuropsychologica 41:1020–1027

    Article  Google Scholar 

  • Knutson B, Bjork JM, Fong GW, Hommer D, Mattay VS, Weinberger DR (2004) Amphetamine modulates human incentive processing. Neuron 43:261–269

    Article  PubMed  CAS  Google Scholar 

  • Laurienti PJ, Field AS, Burdette JH, Maldjian JA, Yen YF, Moody DM (2003) Relationship between caffeine-induced changes in resting cerebral perfusion and blood oxygenation level-dependent signal. Am J Neuroradiol 24:1607–1611

    PubMed  Google Scholar 

  • Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA (2000) Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med 27:867–869

    Article  PubMed  CAS  Google Scholar 

  • Leonard BE, McCartan D, White J, King DJ (2004) Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects. Hum Psychopharmacol 19:151–180

    Article  PubMed  CAS  Google Scholar 

  • Liu TT, Behzadi Y, Reston K, Uludag K, Lu K, Buracas GT, Dubowitz DJ, Buxton RB (2004) Caffeine alters the temporal dynamics of the visual BOLD response. NeuroImage 23:1402–1413

    Article  PubMed  Google Scholar 

  • Masellis M, Basile VS, Muglia P, Ozdemir V, Macciardi FM, Kennedy JL (2002) Psychiatric pharmacogenetics: personalizing psychostimulant therapy in attention-deficit/hyperactivity disorder. Behav Brain Res 130:85–90

    Article  PubMed  Google Scholar 

  • Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100:6186–6191

    Article  PubMed  CAS  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20:RC65

    PubMed  CAS  Google Scholar 

  • Mesulam MM (2000) Principles of cognitive and behavioural neurology. Oxford University Press, New York

    Google Scholar 

  • Mesulam MM, Nobre AC, Kim YH, Parrish TB, Gitelman DR (2001) Heterogeneity of cingulate contributions to spatial attention. NeuroImage 13:1065–1072

    Article  PubMed  CAS  Google Scholar 

  • Midha KK, McKay G, Rawson MJ, Korchinski ED, Hubbard JW (2001) Effects of food on the pharmacokinetics of methylphenidate. Pharm Res 18:1185–1189

    Article  PubMed  CAS  Google Scholar 

  • Mulderink TA, Gitelman DR, Mesulam MM, Parrish TB (2002) On the use of caffeine as a contrast booster for BOLD fMRI studies. NeuroImage 15:37–44

    Article  PubMed  Google Scholar 

  • Murray GB, Cassem E (1998) Use of stimulants in depressed patients with medical illness. In: Nelson JG (ed) Geriatric psychopharmacology. Dekker, New York, pp 245–257

    Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3025

    Google Scholar 

  • Rao SM, Salmeron BJ, Durgerian S, Janowiak JA, Fischer M, Risinger RC, Conant LL, Stein EA (2000) Effects of methylphenidate on functional MRI blood-oxygen-level-dependent contrast. Am J Psychiatry 157:1697–1699

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW (2000) Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp Brain Res 133:130–138

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer JB, Lee DO, Hanford RB, Zink CF, Ely TD, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD (2004) Effect of methylphenidate on executive functioning in adults with attention-deficit/hyperactivity disorder: normalization of behavior but not related brain activity. Biol Psychiatry 56:597–606

    Article  PubMed  CAS  Google Scholar 

  • Shafritz KM, Marchione KE, Gore JC, Shaywitz SE, Shaywitz BA (2004) The effects of methylphenidate on neural systems of attention in attention deficit hyperactivity disorder. Am J Psychiatry 161:1990–1997

    Article  PubMed  Google Scholar 

  • Silveri MM, Anderson CM, McNeil JF, Diaz CI, Lukas SE, Mendelson JH, Renshaw PF, Kaufman MJ (2004) Oral methylphenidate challenge selectively decreases putaminal T2 in healthy subjects. Drug Alcohol Depend 76:173–180

    Article  PubMed  CAS  Google Scholar 

  • Small DM, Gitelman DR, Gregory MD, Nobre AC, Parrish TB, Mesulam MM (2003) The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. NeuroImage 18:633–641

    Article  PubMed  CAS  Google Scholar 

  • Solanto MV (1998) Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 94:127–152

    Article  PubMed  CAS  Google Scholar 

  • Suckling J, Bullmore E (2004) Permutation tests for factorially designed neuroimaging experiments. Hum Brain Mapp 22:193–205

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1998) Coplanar stereotaxic atlas of the human brain. Thieme, Stuttgart

    Google Scholar 

  • Turner DC, Robbins TW, Clark L, Aron AR, Dowson J, Sahakian BJ (2003) Relative lack of cognitive effects of methylphenidate in elderly male volunteers. Psychopharmacology 168:455–464

    Article  PubMed  CAS  Google Scholar 

  • Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD (1998) Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 95:14494–14499

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Logan J, Schlyer D, MacGregor R, Hitzemann R, Wolf AP (1994) Decreased dopamine transporters with age in health human subjects. Ann Neurol 36:237–239

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley SJ (2002) Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 12:557–566

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J, Gatley SJ, Pappas N, Wong C, Vaska P, Zhu W, Swanson JM (2004) Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry 161:1173–1180

    Article  PubMed  Google Scholar 

  • Völlm BA, De Araujo IE, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, Jezzard P, Heal RJ, Matthews PM (2004) Methamphetamine activates reward circuitry in drug naive human subjects. Neuropsychopharmacology 29:1715–1722

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by GlaxoSmithKline and the Wellcome Trust, by a research fellowship of the Alexander von Humboldt Foundation (UM) and was completed within the MRC Behavioural and Clinical Neuroscience Centre (BCNC). We gratefully thank the volunteers who participated in this study for their cooperation, and colleagues at the MRI Unit, Maudsley Hospital, London, UK, for technical assistance with fMRI data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulrich Müller or E. T. Bullmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, U., Suckling, J., Zelaya, F. et al. Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes. Psychopharmacology 180, 624–633 (2005). https://doi.org/10.1007/s00213-005-2264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-2264-9

Keywords

Navigation