Skip to main content
Log in

Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Starting from Brenier’s relaxed formulation of the incompressible Euler equation in terms of geodesics in the group of measure-preserving diffeomorphisms, we propose a numerical method based on Sinkhorn’s algorithm for the entropic regularization of optimal transport. We also make a detailed comparison of this entropic regularization with the so-called Bredinger entropic interpolation problem (see Arnaudon et al. in An entropic interpolation problem for incompressible viscid fluids, 2017, arXiv preprint arXiv:1704.02126). Numerical results in dimension one and two illustrate the feasibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We adopt here the terminology of [1] where the name Bredinger is introduced as a contraction of Brenier and Schrödinger.

  2. However, as we shall see, one way to overcome this problem is by penalizing in the cost the condition \(x_N=X_T(x_0)\).

  3. In connection with Navier–Stokes.

  4. This is formal since existence of Lagrange multipliers for the continuous problem cannot be taken for granted in infinite dimensions unless a demanding qualification-like assumption is met requiring that \(\pi _{0,T}\) somehow lies in the interior of the domain of the relative entropy. Nevertheless, once discretized in space, the problem becomes a finite-dimensional smooth convex minimization with linear constraints so that the existence of such multipliers is guaranteed. To reduce the amount of notation here, we use the same notations for the continuous problem (5.1) as for the discretized one where integrals are replaced by finite sums.

References

  1. Arnaudon, M., Cruzeiro, A.B., Léonard, C., Zambrini, J.C.: An entropic interpolation problem for incompressible viscid fluids (2017). arXiv preprint arXiv:1704.02126

  2. Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. In: Annales de l’institut Fourier, vol. 16, pp. 319–361 (1966)

  3. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics, Applied Mathematical Sciences, vol. 125. Springer, New York (1998)

    MATH  Google Scholar 

  4. Bauschke, H.H., Lewis, A.S.: Dykstra’s algorithm with Bregman projections: a convergence proof. Optimization 48(4), 409–427 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benamou, J.D., Carlier, G., Cuturi, M., Nenna, L., Peyré, G.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comput. 37(2), A1111–A1138 (2015). https://doi.org/10.1137/141000439

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenier, Y.: The least action principle and the related concept of generalized flows for incompressible perfect fluids. J. Am. Math. Soc. 2(2), 225–255 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenier, Y.: The dual least action problem for an ideal, incompressible fluid. Arch. Ration. Mech. Anal. 122(4), 323–351 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenier, Y.: Minimal geodesics on groups of volume-preserving maps and generalized solutions of the euler equations. Commun. Pure. Appl. Math. 52(4), 411–452 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenier, Y.: Generalized solutions and hydrostatic approximation of the Euler equations. Physica D Nonlinear Phenom. 237(14), 1982–1988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: Scaling algorithms for unbalanced transport problems (2016). arXiv preprint arXiv:1607.05816

  11. Csiszár, I.: \(I\)-divergence geometry of probability distributions and minimization problems. Ann. Probab. 3, 146–158 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

  13. Dawson, D.A., Gärtner, J.: Large deviations from the McKean–Vlasov limit for weakly interacting diffusions. Stochastics 20(4), 247–308 (1987). https://doi.org/10.1080/17442508708833446

    Article  MathSciNet  MATH  Google Scholar 

  14. Euler, L.: Principes généraux du mouvement des fluides. Histoire de l’Académie de Berlin, Berlin (1755)

    Google Scholar 

  15. Franklin, J., Lorenz, J.: Special issue dedicated to Alan J. Hoffman on the scaling of multidimensional matrices. Linear Algebra Appl. 114, 717–735 (1989). https://doi.org/10.1016/0024-3795(89)90490-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgiou, T.T., Pavon, M.: Positive contraction mappings for classical and quantum Schrödinger systems. J. Math. Phys. 56(3), 033301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Léonard, C.: From the Schrödinger problem to the Monge–Kantorovich problem. J. Funct. Anal. 262(4), 1879–1920 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Léonard, C.: A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete Contin. Dyn. Syst. A 34(4), 1533–1574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lévy, B.: A numerical algorithm for \(L_2\) semi-discrete optimal transport in 3D. ESAIM Math. Model. Numer. Anal. 49(6), 1693–1715 (2015). https://doi.org/10.1051/m2an/2015055

    Article  MathSciNet  MATH  Google Scholar 

  20. Maheux, P.: Notes on heat kernels on infinite dimensional torus. Lecture Notes (2008). http://www.univ-orleans.fr/mapmo/membres/maheux/InfiniteTorusV2.pdf

  21. Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30(5), 1584–1592 (2011). https://doi.org/10.1111/j.1467-8659.2011.02032.x

    Article  Google Scholar 

  22. Mérigot, Q., Mirebeau, J.M.: Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM J. Numer. Anal. 54(6), 3465–3492 (2016). https://doi.org/10.1137/15M1017235

    Article  MathSciNet  MATH  Google Scholar 

  23. Mikami, T.: Monge’s problem with a quadratic cost by the zero-noise limit of \(h\)-path processes. Probab. Theory Relat. Fields 129(2), 245–260 (2004). https://doi.org/10.1007/s00440-004-0340-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Nenna, L.: Numerical methods for multi-marginal optimal transportation. Ph.D. thesis, PSL Research University (2016)

  25. Pass, B.: Multi-marginal optimal transport: theory and applications. ESAIM: Math. Model. Numer. Anal. 49(6), 1771–1790 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rüschendorf, L.: Convergence of the iterative proportional fitting procedure. Ann. Stat. 23(4), 1160–1174 (1995). https://doi.org/10.1214/aos/1176324703

    Article  MathSciNet  MATH  Google Scholar 

  27. Schrödinger, E.: Über die umkehrung der naturgesetze. Verlag Akademie der wissenschaften in kommission bei Walter de Gruyter u. Company, Berlin (1931)

    MATH  Google Scholar 

  28. Yasue, K.: A variational principle for the Navier–Stokes equation. J. Funct. Anal. 51(2), 133–141 (1983). https://doi.org/10.1016/0022-1236(83)90021-6

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

It is our pleasure to thank Christian Léonard and Yann Brenier for many fruitful discussions, we are also grateful to Christian Léonard for sharing a preliminary version of [1] with us. The authors are grateful to the Agence Nationale de La Recherche through the projects ISOTACE and MAGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-David Benamou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamou, JD., Carlier, G. & Nenna, L. Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm. Numer. Math. 142, 33–54 (2019). https://doi.org/10.1007/s00211-018-0995-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0995-x

Mathematics Subject Classification

Navigation