Skip to main content
Log in

Regularity and a priori error analysis on anisotropic meshes of a Dirichlet problem in polyhedral domains

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Consider the Poisson equation on a polyhedral domain with the given data in a weighted \(L^2\) space. We establish new regularity results for the solution with possible vertex and edge singularities and propose anisotropic finite element algorithms approximating the singular solution in the optimal convergence rate. In particular, our numerical method involves anisotropic graded meshes with less geometric constraints but lacking the maximum angle condition. Optimal convergence on such meshes usually requires smoother given data. Thus, a by-product of our result is to extend the application of these anisotropic meshes to broader practical computations by allowing almost-\(L^2\) data. Numerical tests validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999)

    MATH  Google Scholar 

  2. Apel, T., Heinrich, B.: Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal. 31(3), 695–708 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apel, T., Nicaise, S.: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21, 519–549 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Apel, T., Schöberl, J.: Multigrid methods for anisotropic edge refinement. SIAM J. Numer. Anal 40(5), 1993–2006 (2002). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  5. Apel, T., Sändig, A.-M., Whiteman, J.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19(1), 63–85 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Apel, T., Lombardi, A.L., Winkler, M.: Anisotropic mesh refinement in polyhedral domains: error estimates with data in \(L^2(\Omega )\). ESAIM Math. Model. Numer. Anal. 48(4), 1117–1145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13(2), 214–226 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bacuta, C., Li, H., Nistor, V.: Anisotropic graded meshes and quasi-optimal rates of convergence for the FEM on polyhedral domains in 3D. In: CCOMAS 2012—European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, pp 9003–9014 (2012)

  9. Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high-order finite elements on polyhedra. II. Mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28(7–8), 775–824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 2nd edn. Springer, New York (2002)

    Book  MATH  Google Scholar 

  11. Buffa, A., Costabel, M., Dauge, M.: Anisotropic regularity results for Laplace and Maxwell operators in a polyhedron. C. R. Math. Acad. Sci. Paris 336(7), 565–570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4. North-Holland, Amsterdam (1978)

    Book  MATH  Google Scholar 

  13. Costabel, M., Dauge, M., Nicaise, S.: Weighted analytic regularity in polyhedra. Comput. Math. Appl. 67(4), 807–817 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dauge, M.: Elliptic boundary value problems on corner domains. In: Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988)

  15. De Coster, C., Nicaise, S.: Singular behavior of the solution of the Helmholtz equation in weighted \(L^p\)-Sobolev spaces. Adv. Differ. Equ. 16(1–2), 165–198 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Fritzsch, R.: Optimale finite-elemente-approximationen für Funktionen mit Singularitäten. Thesis (Ph.D.)–TU Dresden (1990)

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  18. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  19. Grisvard, P.: Edge behavior of the solution of an elliptic problem. Math. Nachr. 132, 281–299 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kondrat’ev, V.: Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obšč. 16, 209–292 (1967)

    MathSciNet  Google Scholar 

  21. Kozlov, V.A., Maz’ya, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs, vol. 52. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  22. Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29(2), 513–520 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H.: An anisotropic finite element method on polyhedral domains: interpolation error analysis. Math. Comput. (2017)

  24. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181 (1972)

  25. Schötzau, D., Schwab, C., Wihler, T.P.: \(hp\)-dGFEM for second-order mixed elliptic problems in polyhedra. Math. Comp. 85(299), 1051–1083 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported in part by the NSF Grant DMS-1418853, by the Natural Science Foundation of China (NSFC) Grant 11628104, and by the Wayne State University Grants Plus Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengguang Li.

Appendix

Appendix

We here illustrate that the numerical convergence rate in (89) is a reasonable indicator for the actual convergence rate. Assume

$$\begin{aligned} |u-u_{j}|_{H^1(\Omega )}=C 2^{-sj}, \end{aligned}$$

where \(0<s\le 1\) is the convergence rate and \(C>0\) is independent of j. Recall the Galerkin orthogonality

$$\begin{aligned} a(u, u_j)=a(u_j, u_j)\quad {\mathrm{and}}\quad a(u-u_{j-1},u_{j-1})=a(u_j-u_{j-1},u_{j-1})=0. \end{aligned}$$

Then,

$$\begin{aligned}&|u-u_{j}|_{H^1(\Omega )}^2=a(u-u_j, u-u_j)=a(u-u_j, u)=a(u, u)-a(u_j, u_j) \\&\quad =|u|_{H^1(\Omega )}^2-|u_{j}|_{H^1(\Omega )}^2, \end{aligned}$$

and

$$\begin{aligned}&|u_j-u_{j-1}|_{H^1(\Omega )}^2=a(u_j-u_{j-1}, u_j-u_{j-1})=a(u_j-u_{j-1}, u_j) \\&\quad =a(u_j, u_j)-a(u_{j-1}, u_{j-1})=|u_j|_{H^1(\Omega )}^2-|u_{j-1}|_{H^1(\Omega )}^2. \end{aligned}$$

Therefore, we have

$$\begin{aligned} |u_{j}-u_{j-1}|_{H^1(\Omega )}^2= & {} |u_j|_{H^1(\Omega )}^2-|u_{j-1}|_{H^1(\Omega )}^2\\= & {} |u|_{H^1(\Omega )}^2-|u_{j-1}|_{H^1(\Omega )}^2 -\left( |u|_{H^1(\Omega )}^2-|u_{j}|_{H^1(\Omega )}^2\right) \\= & {} |u-u_{j-1}|_{H^1(\Omega )}^2-|u-u_{j}|_{H^1(\Omega )}^2=C^22^{2s(1-j)}-C^22^{-2sj}\\= & {} \left( 1-2^{-2s}\right) C^22^{2s(1-j)}. \end{aligned}$$

This leads to \(|u_{j}-u_{j-1}|_{H^1(\Omega )}=\sqrt{1-2^{-2s}}C 2^{s(1-j)}\). Hence,

$$\begin{aligned} \log _2\left( \frac{|u_{j}-u_{j-1}|_{H^1(\Omega )}}{|u_{j+1}-u_{j}|_{H^1(\Omega )}}\right) =s. \end{aligned}$$

In the same manner, one can show that if

$$\begin{aligned} 2^{sj} |u-u_{j}|_{H^1(\Omega )} \rightarrow C \quad {\mathrm{as}}\ j\ {\mathrm{increases}}, \end{aligned}$$

then

$$\begin{aligned} \log _2\left( \frac{|u_{j}-u_{j-1}|_{H^1(\Omega )}}{|u_{j+1}-u_{j}|_{H^1(\Omega )}}\right) \rightarrow s \quad {\mathrm{as}}\ j\ {\mathrm{increases}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Nicaise, S. Regularity and a priori error analysis on anisotropic meshes of a Dirichlet problem in polyhedral domains. Numer. Math. 139, 47–92 (2018). https://doi.org/10.1007/s00211-017-0936-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-017-0936-0

Mathematics Subject Classification

Navigation