Skip to main content
Log in

Runge–Kutta convolution quadrature for operators arising in wave propagation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

An error analysis of Runge–Kutta convolution quadrature is presented for a class of non-sectorial operators whose Laplace transform satisfies, besides the standard assumptions of analyticity in a half-plane Re s > σ 0 and a polynomial bound \({\operatorname{O}(|s|^{\mu_1})}\) there, the stronger polynomial bound \({\operatorname{O}(s^{\mu_2})}\) in convex sectors of the form \({|\operatorname*{arg} s| \leq \pi/2-\theta}\) for θ > 0. The order of convergence of the Runge–Kutta convolution quadrature is determined by μ 2 and the underlying Runge–Kutta method, but is independent of μ 1. Time domain boundary integral operators for wave propagation problems have Laplace transforms that satisfy bounds of the above type. Numerical examples from acoustic scattering show that the theory describes accurately the convergence behaviour of Runge–Kutta convolution quadrature for this class of applications. Our results show in particular that the full classical order of the Runge–Kutta method is attained away from the scattering boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberger, A., Ha-Duong, T.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé d’une onde acoustique. Math. Meth. Appl. Sci. 8, 405–435, 598–608 (1986)

    Google Scholar 

  2. Banjai L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banjai, L., Lubich, Ch.: An error analysis of Runge-Kutta convolution quadrature. BIT (2011, to appear)

  4. Banjai L., Sauter S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1), 227–249 (2008)

    Article  MathSciNet  Google Scholar 

  5. Hackbusch, W., Kress, W., Sauter, S.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation by cutoff and panel-clustering. In: Schanz, M., Steinbach, O. (eds.) Boundary Element Analysis: Mathematical Aspects and Applications, vol. 29, pp. 113–134. Springer Lecture Notes in Applied and Computational Mechanics (2006)

  6. Hackbusch W., Kress W., Sauter S.A.: Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA J. Numer. Anal. 29(1), 158–179 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hairer, E., Wanner, G.: Solving ordinary differential equations. II. In: Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)

  8. Kress W., Sauter S.: Numerical treatment of retarded boundary integral equations by sparse panel clustering. IMA J. Numer. Anal. 28(1), 162–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Laliena A.R., Sayas F.-J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112(4), 637–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lubich Ch.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67, 365–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lubich Ch.: Convolution quadrature revisited. BIT 44(3), 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lubich Ch., Ostermann A.: Runge-Kutta methods for parabolic equations and convolution quadrature. Math. Comp. 60(201), 105–131 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Schädle A., López-Fernández M., Lubich Ch.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28(2), 421–438 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schanz M.: Wave Propagation in Viscoelastic and Poroelastic Continua. A Boundary Element Approach. Lecture Notes in Applied and Computational Mechanics 2. Springer, New York (2001)

    Google Scholar 

  15. Wang X., Wildman R.A., Weile D.S., Monk P.: A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetics. IEEE Trans. Antennas Propag. 56(8, part 1), 2442–2452 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lehel Banjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banjai, L., Lubich, C. & Melenk, J.M. Runge–Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119, 1–20 (2011). https://doi.org/10.1007/s00211-011-0378-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-011-0378-z

Mathematics Subject Classification (2000)

Navigation