Skip to main content
Log in

Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We elaborate on the interpretation of some mixed finite element spaces in terms of differential forms. In particular we define regularization operators which, combined with the standard interpolators, enable us to prove discrete Poincaré–Friedrichs inequalities and discrete Rellich compactness for finite element spaces of differential forms of arbitrary degree on compact manifolds of arbitrary dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A. and Fournier J.J.F. (2003). Sobolev spaces, 2nd edn. Pure and applied mathematics, vol. 140. Academic, London

    Google Scholar 

  2. Arnold, D.N.: Differential complexes and numerical stability. Plenary address delivered at ICM 2002. International Congress of Mathematicians, Beijing (2002)

  3. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods. I The de Rham complex. Compatible spatial discretizations, IMA Vol. Math. Appl. 142, pp. 24–46. Springer, New York (2006)

  4. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods. II. The elasticity complex. Compatible spatial discretizations, IMA Vol. Math. Appl. 142, pp. 47–67. Springer, New York (2006)

  5. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques and applications. Acta Numerica, pp. 1–155, Cambridge University Press, Cambridge (2006)

  6. Arnold D.N. and Winther R. (2002). Mixed finite elements for elasticity. Numer. Math. 92: 401–419

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernardi C. and Girault V. (1998). A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35: 1893–1916

    Article  MATH  MathSciNet  Google Scholar 

  8. Boffi D., Fernandes P., Gastaldi L. and Perugia I. (1999). Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36: 1264–1290

    Article  MATH  MathSciNet  Google Scholar 

  9. Boffi D. (2000). Fortin operator and discrete compactness for edge elements. Numer. Math. 87: 229–246

    Article  MATH  MathSciNet  Google Scholar 

  10. Boffi D. (2001). A note on the De Rham complex and a discrete compactness property. Appl. Math. Lett. 14: 33–38

    Article  MATH  MathSciNet  Google Scholar 

  11. Bossavit, A.: Mixed finite elements and the complex of Whitney forms. The mathematics of finite elements and applications, VI (Uxbridge, 1987), pp. 137–144. Academic, London (1988)

  12. Bott, R., Tu, L.W.: Differential forms in algebraic topology. Graduate texts in mathematics, vol. 82. Springer, Heidelberg (1982)

  13. Brezzi F. (1974). On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8: 129–151

    MathSciNet  Google Scholar 

  14. Brezzi F., Marini L.D. and Douglas J. (1985). Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47: 217–235

    Article  MATH  MathSciNet  Google Scholar 

  15. Brezzi F. and Fortin M. (1991). Mixed and hybrid finite element methods. Springer, Heidelberg

    MATH  Google Scholar 

  16. Buffa A. and Christiansen S.H. (2003). The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94: 229–267

    Article  MATH  MathSciNet  Google Scholar 

  17. Buffa A. and Christiansen S.H. (2005). A dual finite element complex on the barycentric refinement. C. R. Math. Acad. Sci. Paris 340: 461–464

    MATH  MathSciNet  Google Scholar 

  18. Caorsi S., Fernandes P. and Raffetto M. (2001). Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements. M2AN Math. Model. Numer. Anal. 35: 331–354

    Article  MATH  MathSciNet  Google Scholar 

  19. Christiansen S.H. (2005). A div-curl lemma for edge elements. SIAM J. Numer. Anal. 43: 116–126

    Article  MATH  MathSciNet  Google Scholar 

  20. Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Preprint Pure Mathematics, ISSN 0806-2439, University of Oslo, No. 25 (2006)

  21. Clément P. (1975). Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 9: 77–84

    Google Scholar 

  22. Demkowicz, L.: hp-adaptive finite elements for time-harmonic Maxwell equations. Topics in computational wave propagation, 163–199, Lect. Notes Comput. Sci. Eng. 31. Springer, Heidelberg (2003)

  23. Demkowicz L., Monks P., Vardapetyan L. and Rachowicz W. (2000). De Rham diagram for hp-finite element spaces. Comput. Math. Appl. 39: 29–38

    Article  MATH  Google Scholar 

  24. Dodziuk J. and Patodi V.K. (1976). Riemannian structures and triangulations of manifolds. J. Indian Math. Soc. 40: 1–52

    MATH  MathSciNet  Google Scholar 

  25. Gelfand, S.I., Manin, Y.I.: Methods of homological algebra (second edition). Springer Monographs in Mathematics. Springer, Heidelberg (2003)

  26. Girault V. and Scott L.R. (2003). A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40: 1–19

    Article  MATH  MathSciNet  Google Scholar 

  27. Griffiths, A., Phillip, A.: Rational homotopy theory and differential forms. Birkhäuser (1981)

  28. Hiptmair R. (1999). Canonical construction of finite elements. Math. Comp. 68: 1325–1346

    Article  MATH  MathSciNet  Google Scholar 

  29. Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numerica, pp. 237–339. Cambridge University Press, Cambridge (2002)

  30. Kikuchi F. (1989). On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math. 36: 479–490

    MATH  MathSciNet  Google Scholar 

  31. Lang, S.: Differential and Riemannian manifolds, 3rd edn. Graduate Texts in Mathematics, vol. 160. Springer, Heidelberg (1995)

  32. Monk P. (2003). Finite element methods for Maxwell’s equations. Oxford University Press, New York

    MATH  Google Scholar 

  33. Nédélec J.-C. (1980). Mixed finite elements in \({\mathbb{R}}^3\) Numer. Math. 35: 315–341

    Article  MATH  MathSciNet  Google Scholar 

  34. Nédélec J.-C. (1982). Éléments finis mixtes incompressibles pour l’équation de Stokes dans \({\mathbb{R}}^3\) Numer. Math. 39: 97–112

    Article  MATH  MathSciNet  Google Scholar 

  35. Nédélec J.-C. (1986). A new family of mixed finite elements in \({\mathbb{R}}^3\) Numer. Math. 50(1): 57–81

    Article  MATH  MathSciNet  Google Scholar 

  36. Rapetti F., Dubois F. and Bossavit A. (2003). Discrete vector potentials for nonsimply connected three-dimensional domains. SIAM J. Numer. Anal. 41: 1505–1527

    Article  MATH  MathSciNet  Google Scholar 

  37. Raviart, P.A., Thomas, J.-M.: A mixed finite element method for 2nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical aspects of the finite element method. Lecture Notes in Math., vol. 606, pp. 292–315. Springer, New York (1977)

  38. De Rham, G.: Variétés différentiables. Formes, courants, formes harmoniques, 3rd edn. Publications de l’Institut de Mathématique de l’Université de Nancago, III. Actualités Scientifiques et Industrielles, No. 1222b. Hermann, Paris (1973)

  39. Roberts, J.E., Thomas, J.-M.: Mixed and hybrid methods. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of numerical analysis, vol. II, pp. 523–640, Finite element methods (Part 1), North-Holland (1991)

  40. Schöberl, J.: A posteriori error estimates for Maxwell equations RICAM Report No. 2005-10

  41. Schwab, C.: p- and hp-finite element methods. Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998)

  42. Scott L.R. and Zhang S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54: 483–493

    Article  MATH  MathSciNet  Google Scholar 

  43. Spanier E.H. (1966). Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London

    MATH  Google Scholar 

  44. Taylor M. (1996). Partial differential equations, vol. I Basic theory. Springer, New York

    Google Scholar 

  45. Weil A. (1952). Sur les théorèmes de De Rham. Comment. Math. Helv. 26: 119–145

    Article  MATH  MathSciNet  Google Scholar 

  46. Whitney H. (1957). Geometric integration theory. Princeton University Press, Princeton, N. J.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorre H. Christiansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christiansen, S.H. Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension. Numer. Math. 107, 87–106 (2007). https://doi.org/10.1007/s00211-007-0081-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0081-2

Mathematics Subject Classification (2000)

Navigation