Skip to main content
Log in

Numerical analysis of nonlinear multiharmonic eddy current problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

This work is devoted to non-linear eddy current problems and their numerical treatment by the so-called multiharmonic approach. Since the sources are usually alternating currents, we propose a truncated Fourier series expansion instead of a costly time-stepping scheme. Moreover, we suggest to introduce some regularization parameter that ensures unique solvability not only in the factor space of divergence-free functions, but also in the whole space H(curl). Finally, we provide a rigorous estimate for the total error that is due to the use of truncated Fourier series, the regularization technique and the spatial finite element discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche, C., Bernardi, C., Dauge, M.: Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21, 823–864 (1998)

    Article  Google Scholar 

  2. Babuska, I.: Error bounds for the finite element method. Numer. Math. 16, 322–333 (1971)

    Google Scholar 

  3. Bachinger, F.: Multigrid solvers for 3D multiharmonic nonlinear magnetic field computations. Diploma thesis, Institute for Computational Mathematics, Johannes Kepler University Linz, 2003

  4. Bachinger, F., Kaltenbacher, M., Reitzinger, S.: An efficient solution strategy for the HBFE method. Proceedings of the IGTE ‘02 Symposium Graz, Austria, 2002, pp. 385–389

  5. Bachinger, F., Langer, U., Schöberl, J.: Efficient solvers for nonlinear time-periodic eddy current problems. SFB-Report No. 2004-16, Johannes Kepler Universiy Linz, SFB “Numerical and Symbolic Scientific Computing”, 2004

  6. Bachinger, F., Langer, U., Schöberl, J.: Numerical analysis of nonlinear multiharmonic eddy current problems. SFB-Report No. 2004-01, Johannes Kepler Universiy Linz, SFB “Numerical and Symbolic Scientific Computing”, 2004

  7. Braess, D.: Finite Elements: Theory, fast solvers and applications in solid mechanics. 2nd ed., Cambridge University Press, Cambridge, 2001

  8. Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276/2, 845–876 (2002)

    Google Scholar 

  9. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. RAIRO Modél. Math. Anal. Numér. 33, 627–649 (1999)

    Google Scholar 

  10. Costabel, M., Dauge, M., Nicaise, S.: Singularities of eddy current problems. Preprint NI03019, Newton Institute Cambridge, 2003

  11. Costabel, M., Dauge, M., Nicaise, S.: Corner singularities of Maxwell interface and eddy current problems. Operator Theoretical Methods and Applications to Mathematical Physics – The Erhard Meister Memorial Volume (Gohberg, I., dos Santos, A. F., Speck, F.-O., Teixeira, F.S., Wendland, W. eds.), Operator Theory: Advances and Applications, Birkhäuser, 2003

  12. Engl, H. W., Lindner, E.: A combined boundary value and transmission problem arising from the calculation of eddy currents: well-posedness and numerical treatment. Journ. Appl. Math. Phys. 35, 289–307 (1984)

    Article  Google Scholar 

  13. Evans, L. C.: Partial Differential Equations. Graduate studies in mathematics, vol. 19, American Mathematical Society, Providence, Rhode Island, 1998

  14. de Gersem, H., Sande, H. V., Hameyer, K.: Strong coupled multiharmonic finite element simulation package. COMPEL 20, 535–546 (2001)

    Google Scholar 

  15. Gyselinck, J., Dular, P., Geuzaine, C., Legros, W.: Harmonic-balance finite-element modeling of electromagnetic devices: A Novel Approach. IEEE Transactions on Magnetics 38, 521–524 (2002)

    Article  Google Scholar 

  16. Ida, N., Bastos, P. A.: Electromagnetics and calculation of fields. Springer, New York, 1997

  17. Jack, A., Mecrow, B.: Methods for magnetically nonlinear problems involving significant hysteresis and eddy currents. IEEE Transactions on Magnetics 26, 424–429 (1990)

    Article  Google Scholar 

  18. Paoli, G., Bíro, O., Buchgraber, G.: Complex representation in nonlinear time harmonic eddy current problems. IEEE Transactions on Magnetics 34, 2625–2628 (1998)

    Article  Google Scholar 

  19. Pechstein, C.: Multigrid-Newton-Methods for nonlinear magnetostatic problems. Diploma thesis, Institute for Computational Mathematics, Johannes Kepler University Linz, 2004

  20. Reitzinger, S., Kaltenbacher, B., Kaltenbacher, M.: A note on the approximation of B-H curves for nonlinear magnetic field computations. SFB-Report No. 02-30, Johannes Kepler Universiy Linz, SFB “Numerical and Symbolic Scientific Computing”, 2002

  21. Roberts, J. E., Thomas, J.-M.: Mixed and Hybrid Methods. Handbook of Numerical Analysis II: Finite Element Methods (Part 1) (P. G. Ciarlet and J. L. Lions, eds.), North-Holland, Amsterdam, 1991

  22. Schöberl, J.: Commuting quasi-interpolation operators for mixed finite elements. Technical Report ISC-01-10-MATH, Texas A&M University, 2001

  23. Strang, G.: Variational crimes in the finite element method. The mathematical foundations of the finite element method with applications to partial differential equations (A. K. Aziz, ed.), Academic Press, New York, 1972

  24. Vandevelde, L., Gyselinck, J., Melkebeek, J.: Steady-state finite element analysis in the frequeny domain of squirrel-cage induction motors. Proceedings of the SPEEDAM ‘94 Symposium, Taormina, Italy, 1994, pp. 29–34

  25. Yamada, S., Bessho, K.: Harmonic field calculation by the combination of finite element analysis and harmonic balance method. IEEE Transactions on Magnetics 24, 2588–2590 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bachinger.

Additional information

This work has been supported by the Austrian Science Fund “Fonds zur Förderung der wissenschaftlichen Forschung (FWF)” under the grants SFB F013, P 14953 and START Y192.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachinger, F., Langer, U. & Schöberl, J. Numerical analysis of nonlinear multiharmonic eddy current problems. Numer. Math. 100, 593–616 (2005). https://doi.org/10.1007/s00211-005-0597-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-005-0597-2

Mathematics Subject Classification (2001)

Navigation