Skip to main content
Log in

Effects of the suppression of 5-HT1A receptors in the left, right, or bilateral basolateral amygdala on memory consolidation in chronic stress in male rats

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The serotonin-1A receptors (5-HT1A) in the two cerebral hemispheres are differentially involved in memory. The distribution of 5-HT1A receptors in the left and right amygdala is different. Furthermore, evidence shows that the 5-HT1A receptors in the left and right amygdala work differently in memory function. The basolateral amygdala (BLA) also regulates hippocampal long-term potentiation (LTP) during stress. However, which BLA structure in each hemisphere underlies such lateralized function is unclear. The present research investigated the possible involvement of 5-HT1A lateralization in the BLA on stress-induced memory impairment. 5-HT1A receptor antagonist (Way-100-635) was injected into the left, right, or bilateral BLA twenty minutes before chronic restraint stress (CRS) for 14 consecutive days. Results indicated that suppression of 5HT1A-receptors in the BLA plays an essential role in reducing the acquisition of passive avoidance in the shuttle box test and spatial memory in the Barnes maze test in the stress animals. This decrease was significant in the CRS animals with left and bilateral suppressed 5HT1A-receptors in the BLA. Field potential recording results showed that the left, right, and bilateral injection of Way-100-635 into the BLA significantly reduced the slope and amplitude of fEPSP in the CA1 area of the hippocampus in stressed rats. No significant difference was observed in neuronal arborization in the CA1 area of the hippocampus. In conclusion, the 5-HT1A receptor in the left and right sides of BLA nuclei play a different role in memory consolidation in the hippocampus under stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Adamec R, Blundell J, Burton P (2005) Role of NMDA receptors in the lateralized potentiation of amygdala afferent and efferent neural transmission produced by predator stress. Physiol Behav 86(1-2):75–91

    CAS  PubMed  Google Scholar 

  • Ahmed T, Frey JU, Korz V (2006) Long-term effects of brief acute stress on cellular signaling and hippocampal LTP. J Neurosci 26(15):3951–3958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen HN, Bobnar HJ, Kolber BJ (2021) Left and right hemispheric lateralization of the amygdala in pain. Prog Neurobiolo:196, 101891

  • Andersen SL, Teicher MH (1999) Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. Neuroreport 10:3497–3500

    CAS  PubMed  Google Scholar 

  • Baas D, Aleman A, Kahn RS (2004) Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res Rev 45(2):96–103

    PubMed  Google Scholar 

  • Baker KB, Kim JJ (2004) Amygdalar lateralization in fear conditioning: evidence for greater involvement of the right amygdala. Behav Neurosci 118(1):15

    PubMed  Google Scholar 

  • Bayram-Weston Z, Olsen E, Harrison DJ, Dunnett SB, Brooks SP (2016) Optimising Golgi–Cox staining for use with perfusion-fixed brain tissue validated in the zQ175 mouse model of Huntington's disease. J Neurosci Meth 265:81-88.

  • Belcheva I, Tashev R, Belcheva S (2007) Hippocampal asymmetry in serotonergic modulation of learning and memory in rats. Laterality 12(6):475–486

    CAS  PubMed  Google Scholar 

  • Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M (2016) Serotonin, amygdala and fear: assembling the puzzle. Front Neural Circu 10:24

    Google Scholar 

  • Chemel BR, Roth BL, Armbruster B, Watts VJ, Nichols DE (2006) WAY-100-635 is a potent dopamine D 4 receptor agonist. Psychopharmacol 188:244–251

    CAS  Google Scholar 

  • Chenani A, Weston G, Ulivi AF, Castello-Waldow TP, Huettl RE, Chen A, Attardo A (2022) Repeated stress exposure leads to structural synaptic instability prior to disorganization of hippocampal coding and impairments in learning. Transl Psychiatry 12(1):381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christianson JP, Ragole T, Amat J, Greenwood BN, Strong PV, Paul ED, Maier SF (2010) 5-hydroxytryptamine 2C receptors in the basolateral amygdala are involved in the expression of anxiety after uncontrollable traumatic stress. Biol Psychiatry 67(4):339–345

    CAS  PubMed  Google Scholar 

  • de Andrade Strauss CV, Vicente MA, Zangrossi H Jr (2013) Activation of 5-HT1A receptors in the rat basolateral amygdala induces both anxiolytic and antipanic-like effects. Behav Brain Res 246:103–110

    Google Scholar 

  • de Paula BB, Leite-Panissi CRA (2016) Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior. Brain Res 1643:152–158

    PubMed  Google Scholar 

  • Fink M, Wadsak W, Savli M, Stein P, Moser U, Hahn A, Lanzenberger R (2009) Lateralization of the serotonin-1A receptor distribution in language areas revealed by PET. Neuroimage 45(2):598–605

    PubMed  Google Scholar 

  • Gläscher J, Adolphs R (2003) Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. J Neurosci 23(32):10274–10282

    PubMed  PubMed Central  Google Scholar 

  • Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlinska JH (2019) Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn-Schmiedeb Arch Pharmacol 392(1):1–18

    CAS  Google Scholar 

  • Glikmann-Johnston Y, Saling MM, Reutens DC, Stout JC (2015a) Hippocampal 5-HT1A receptor and spatial learning and memory. Front Pharmacol 6:289

    PubMed  PubMed Central  Google Scholar 

  • Glikmann-Johnston Y, Saling MM, Chen J, O’Keefe G, Gong S, Tochon-Danguy H, Mulligan R, Reutens C (2015b) Hippocampal 5-HT1A receptor binding is related to object–location memory in humans. Brain Str Fun 220:559–570

    CAS  Google Scholar 

  • Goodarzi N, Dabbaghi P, Valipour H, Vafadari B (2015) Pilot study: the role of the hemispheric lateralization in mental disorders by use of the limb (eye, hand, foot) dominance. Basic Clin Neurosci 6(2):101

    PubMed  PubMed Central  Google Scholar 

  • Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826(1):35–43

    CAS  PubMed  Google Scholar 

  • Hahn A, Haeusler D, Kraus C, Höflich AS, Kranz GS, Baldinger P, Lanzenberger R (2014) Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression. Hum Brain Mapp 35(8):3857–3866

    PubMed  PubMed Central  Google Scholar 

  • Haider S, Khaliq S, Tabassum S, Haleem DJ (2012) Role of Somatodendritic and postsynaptic 5-HT1A receptors on learning and memory functions in rats. Neurochem Res 37(10):2161–2166

    CAS  PubMed  Google Scholar 

  • Huang P, Li C, Fu T, Zhao D, Yi Z, Lu Q, Xu X (2015) Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice. Behav Brain Res 288:1–10

    CAS  PubMed  Google Scholar 

  • Huff ML, Emmons EB, Narayanan NS, LaLumiere RT (2016) Basolateral amygdala projections to ventral hippocampus modulate the consolidation of footshock, but not contextual, learning in rats. Learn Mem 23(2):51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kähkönen S, Jääskeläinen IP, Pennanen S, Liesivuori J, Ahveninen J (2002) Acute trytophan depletion decreases intensity dependence of auditory evoked magnetic N1/P2 dipole source activity. Psychopharmacol1 64(2):221–227

    Google Scholar 

  • Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I (2003) Asymmetrical allocation of NMDA receptor ε2 subunits in hippocampal circuitry. Science 300(5621):990–994

    CAS  PubMed  Google Scholar 

  • Kim EJ, Pellman B, Kim JJ (2015) Stress effects on the hippocampus: a critical review. Learn Mem 22(9):411–416

    PubMed  PubMed Central  Google Scholar 

  • Kranz GS, Hahn A, Baldinger P, Haeusler D, Philippe C, Kaufmann U, Lanzenberger R (2014) Cerebral serotonin transporter asymmetry in females, males and male-to-female transsexuals measured by PET in vivo. Brain Str Fun 219(1):171–183

    CAS  Google Scholar 

  • Kumar RS, Narayanan SN, Kumar N, Nayak S (2018) Exposure to enriched environment restores altered passive avoidance learning and ameliorates hippocampal injury in male albino Wistar rats subjected to chronic restraint stress. Int J Appl Basic Med Res 8(4):231

    CAS  PubMed  PubMed Central  Google Scholar 

  • LaLumiere RT, McGaugh JL (2005) Memory enhancement induced by post-training intrabasolateral amygdala infusions of β-adrenergic or muscarinic agonists requires activation of dopamine receptors: involvement of right, but not left, basolateral amygdala. Learn Mem 12(5):527–532

    PubMed  PubMed Central  Google Scholar 

  • Lillywhite LM, Saling MM, Briellmann RS, Weintrob DL, Pell GS, Jackson GD (2007) Differential contributions of the hippocampus and rhinal cortices to verbal memory in epilepsy. Epilepsy Behav 10(4):553–559

    PubMed  Google Scholar 

  • Linley SB, Olucha-Bordonau F, Vertes RP (2017) Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat. J Comp Neurol 525(1):116–139

    CAS  PubMed  Google Scholar 

  • Lupien SJ, Juster RP, Raymond C, Marin MF (2018) The effects of chronic stress on the human brain: from neurotoxicity, to vulnerability, to opportunity. Front Neuroendocrinol 49:91–105

    CAS  PubMed  Google Scholar 

  • Lv ZX, Huang DH, Ye W, Chen ZR, Huang WL, Zheng JO (2014) Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study. Epilepsy Behav 35:64–71

    PubMed  Google Scholar 

  • Maharjan DM, Dai YY, Glantz EH, Jadhav SP (2018) Disruption of dorsal hippocampal–prefrontal interactions using chemogenetic inactivation impairs spatial learning. Neurobiol Learn Mem 155:351–360

    PubMed  PubMed Central  Google Scholar 

  • Markowitsch HJ (1998) Differential contribution of right and left amygdala to affective information processing. Behav Neurol 11(4):233–244

    PubMed  Google Scholar 

  • McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, Nasca C (2015) Mechanisms of stress in the brain. Nature Neurosci 18(10):1353–1363

    CAS  PubMed  Google Scholar 

  • McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186(1):190–222

    PubMed  PubMed Central  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    CAS  PubMed  Google Scholar 

  • Meneses A, Liy-Salmeron G (2012) Serotonin and emotion, learning and memory. Rev Neurosci 23(5-6):543–553

    CAS  PubMed  Google Scholar 

  • Miller J, Watrous AJ, Tsitsiklis M, Lee SA, Sheth SA, Schevon CA, Smith EH, Sperling MR, Sharan A, Asadi-Pooya AA, Worrell GA (2018) Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. Nat Commun 9(1):2423

    PubMed  PubMed Central  Google Scholar 

  • Mock N, Balzer C, Gutbrod K, De Haan B, Jäncke L, Ettlin T, Trost W (2022) Lesion-symptom mapping corroborates lateralization of verbal and nonverbal memory processes and identifies distributed brain networks responsible for memory dysfunction. Cortex 153:178–193

    PubMed  Google Scholar 

  • Mogha AGSR, Debata PR, Wen GY, Banerjee P (2012) Serotonin 1A receptor-mediated signaling through ERK and PKCα is essential for normal synaptogenesis in neonatal mouse hippocampus. Translat Psychiatry 2(1):66–66

    Google Scholar 

  • Palchaudhuri M, Flügge G (2005) 5-HT1A receptor expression in pyramidal neurons of cortical and limbic brain regions. Cell Tiss Res 321(2):159–172

    CAS  Google Scholar 

  • Pascual M, López-Hidalgo R, Montagud-Romero S, Ureña-Peralta JR, Rodríguez-Arias M, Guerri C (2021) Role of mTOR-regulated autophagy in spine pruning defects and memory impairments induced by binge-like ethanol treatment in adolescent mice. Brain Pathol 31(1):174–188

    CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard, cover edn. Elsevier

  • Popa D, Duvarci S, Popescu AT, Léna C, Paré D (2010) Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Pro Nat Acad Sci 107(14):6516–6519

    CAS  Google Scholar 

  • Preller KH, Pokorny T, Hock A, Kraehenmann R, Stämpfli P, Seifritz E, Scheidegger M, Vollenweider FX (2016) Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Pro Nat Acad Sci 113(18):119–5124

    Google Scholar 

  • Richardson MP, Strange BA, Dolan RJ (2004) Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nat Neurosci 7(3):278–285

    CAS  PubMed  Google Scholar 

  • Rogers LJ (2021) Brain lateralization and cognitive capacity. Animals (Basel) 11(7)

  • Savic I, Lindstrom P, Gulyas B, Halldin C, Andree B, Farde L (2004) Limbic reductions of 5-HT1A receptor binding in human temporal lobe epilepsy. Neurol 62:1343–1351

    CAS  Google Scholar 

  • Sengupta A, Bocchio M, Bannerman DM, Sharp T, Capogna M (2017) Control of amygdala circuits by 5-HT neurons via 5-HT and glutamate cotransmission. J Neurosci 37(7):1785–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj S, Walker C, Arnone D, Cao B, Faulkner P, Cowen PJ, Roiser JP, Howes O (2018) Effect of citalopram on emotion processing in humans: a combined 5-HT1A [11C] CUMI-101 PET and functional MRI study. Neuropsychopharmacol 43(3):655–664

    CAS  Google Scholar 

  • Solís-Guillén R, Leopoldo M, Meneses A, Centurión D (2021) Activation of 5-HT1A and 5-HT7 receptors enhanced a positively reinforced long-term memory. Behavi Brain Res 397:112932

    Google Scholar 

  • Stiedl O, Pappa E, Konradsson-Geuken Å, Ögren SO (2015) The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol 6:162

    PubMed  PubMed Central  Google Scholar 

  • Surget A, Belzung C (2022) Adult hippocampal neurogenesis shapes adaptation and improves stress response: a mechanistic and integrative perspective. Mol Psychiatry 27(1):403–421

    CAS  PubMed  Google Scholar 

  • Tian Z, Yamanaka M, Bernabucci M, Zhao MG, Zhuo M (2017) Characterization of serotonin-induced inhibition of excitatory synaptic transmission in the anterior cingulate cortex. Mol Brain 10(1):1–10

    Google Scholar 

  • Toczek MT, Carson RE, Lang L, Ma Y, Spanaki MV, Der MG, Fazilat S, Kopylev L, Herscovitch P, Eckelman WC, Theodore WH (2003) PET imaging of 5-HT1A receptor binding in patients with temporal lobe epilepsy. Neurology 60:749–756

    CAS  PubMed  Google Scholar 

  • Westergaard GC, Chavanne TJ, Lussier ID, Houser L, Cleveland A, Suomi SJ, Higley JD (2003) Left-handedness is correlated with CSF monoamine metabolite and plasma cortisol concentrations, and with impaired sociality, in free-ranging adult male rhesus macaques (Macaca mulatta). Laterality 8(2):169–187

    CAS  PubMed  Google Scholar 

  • Woon FL, Hedges DW (2009) Amygdala volume in adults with posttraumatic stress disorder: a meta-analysis. J Neuropsychiatry Clin Neurosci 21(1):5–12

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Neuroscience Sciences Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

HV collected data and wrote the manuscript under the supervision of GHM. GPJ and AM Methodology. GHM designed the experiment, collected data, analyzed data, and wrote the manuscript. All authors read and approved the final manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Gholam Hossein Meftahi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 680 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valipour, H., Jahromi, G.P., Mohammadi, A. et al. Effects of the suppression of 5-HT1A receptors in the left, right, or bilateral basolateral amygdala on memory consolidation in chronic stress in male rats. Naunyn-Schmiedeberg's Arch Pharmacol 397, 3049–3064 (2024). https://doi.org/10.1007/s00210-023-02790-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02790-1

Keywords

Navigation