Skip to main content
Log in

Trehalose-induced SIRT1/AMPK activation regulates SREBP-1c/PPAR-α to alleviate lipid accumulation in aged liver

  • Research
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Aging is associated with a disturbance in the regulation of the metabolic function of the liver, which increases the risk of liver and systemic diseases. Trehalose, a natural disaccharide, has been identified to reduce dyslipidemia, hepatic steatosis, and glucose intolerance. However, the roles of trehalose on lipid metabolism in aged liver are unclear which was investigated in this study. Thirty-two male Wistar rats were randomly allocated into four groups (n = 8). Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution orally for 30 days. Control groups of aged and young rats did not receive any treatment. At the end of the treatment period, blood samples and liver tissues were collected. Then the expression of SIRT1, AMPK, SREBP-1c, and PPAR-α and the level of AMPK phosphorylation (p-AMPK) were quantified by real-time polymerase chain reaction and western blotting. Moreover, biochemical parameters and the histopathology of livers were evaluated. Trehalose supplementation increased the level of SIRT1, p-AMPK, and PPAR-α, whereas the level of SREBP-1c was diminished in the liver of old animals. In addition, treatment with trehalose improved histopathological features of senescent livers. Taken together, our results show that old rats developed lipogenesis in the liver which was alleviated with trehalose. Therefore, trehalose may be an effective intervention to reduce the progression of aging-induced liver diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the data generated or analyzed during this study are included in this published article.

Abbreviations

ALT:

Alanine aminotransferase

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

APS:

Ammonium persulfate

AST:

Aspartate aminotransferase

ATP:

Adenosine triphosphate

ELISA:

Enzyme-linked immunosorbent assay

FSG:

Fasting serum glucose

HDL:

High-density lipoprotein

H&E:

Hematoxylin and eosin

HOMA-IR:

Homeostatic model assessment for insulin resistance

LDL:

Low-density lipoprotein

LKB1:

Liver kinase B1

NAD+ :

Nicotinamide adenine dinucleotide

NAFLD:

Non-alcoholic fatty liver disease

p-AMPK:

Phospho-AMPK

PCR:

Polymerase chain reaction

PPAR-α:

Peroxisome proliferator–activated receptor α

PVDF:

Polyvinylidene difluoride

SEM:

Standard error of the mean

SIRT1:

Sirtuin 1

SREBP-1c:

Sterol regulatory element–binding protein-1c

TEMED:

Tetramethylethylendiamine

VLDL:

Very-low-density lipoprotein

References

  • Antunes LC, Elkfury JL, Jornada MN, Foletto KC, Bertoluci MC (2016) Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Arch Endocrinol Metab 60:138–142

    Article  PubMed  Google Scholar 

  • Arai C, Arai N, Mizote A, Kohno K, Iwaki K, Hanaya T, Arai S, Ushio S, Fukuda S (2010) Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance. Nutr Res 30(12):840–848

    Article  PubMed  CAS  Google Scholar 

  • Attal N, Marrero E, Thompson KJ, McKillop IH (2022) Role of AMPK-SREBP signaling in regulating fatty acid binding-4 (FABP4) expression following ethanol metabolism. Biology 11(11):1613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahri F, Khaksari M, Movahedinia S, Shafiei B, Rajizadeh MA, Nazari-Robati M (2021) Improving SIRT1 by trehalose supplementation reduces oxidative stress, inflammation, and histopathological scores in the kidney of aged rats. J Food Biochem 45(10):e13931

    Article  PubMed  CAS  Google Scholar 

  • Bárcena B, Salamanca A, Pintado C, Mazuecos L, Villar M, Moltó E, Bonzón-Kulichenko E, Vázquez J, Andrés A, Gallardo N (2021) Aging induces hepatic oxidative stress and nuclear proteomic remodeling in liver from Wistar rats. Antioxidants 10(10):1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedossa P, Poitou C, Veyrie N, Bouillot JL, Basdevant A, Paradis V, Tordjman J, Clement K (2012) Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56(5):1751–1759

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways. Mech Ageing Dev 187:111215

    Article  PubMed  CAS  Google Scholar 

  • Chung KW (2021) Advances in understanding of the role of lipid metabolism in aging. Cells 10(4):880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, Chi M, Newberry EP, Chen Z, Finck BN (2016) Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal 9(416):ra21–ra21

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding R-B, Bao J, Deng C-X (2017) Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13(7):852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, Ohto T, Kita Y, Nakamura M, Suzuki S (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10(1):1–13

    Article  Google Scholar 

  • Eustice M, Konzman D, Reece JM, Ghosh S, Alston J, Hansen T, Golden A, Bond MR, Abramowitz LK, Hanover JA (2022) Nutrient sensing pathways regulating adult reproductive diapause in C. elegans. PLoS one 17(9):e0274076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    Article  PubMed  CAS  Google Scholar 

  • Fulco M, Sartorelli V (2008) Comparing and contrasting the roles of AMPK and SIRT1 in metabolic tissues. Cell Cycle 7(23):3669–3679

    Article  PubMed  CAS  Google Scholar 

  • Haug A, Høstmark AT (1987) Lipoprotein lipases, lipoproteins and tissue lipids in rats fed fish oil or coconut oil. J Nutr 117(6):1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Hozhabri Y, Sadeghi A, Nazari-Robati M, Bahri F, Salimi F, Abolhassani M, Mohammadi A (2022) Effects of trehalose on NFE2L2, catalase, and superoxide dismutase in the kidney of aged rats. Mol Biol Res Commun 11(1):29

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC (2019) Hallmarks of aging in the liver. Comput Struct Biotechnol J 17:1151–1161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ismi DF, Aminuddin A, Santoso A, As’ad S, Yustisia I, Idris I (2022) The effect of trehalose sugar on insulin resistance in old rats by assessing HOMA-IR (homeostasis model assessment-insulin resistance). Amerta Nutr 6(2):198–205

    Article  Google Scholar 

  • Kim H, Kisseleva T, Brenner DA (2015) Aging and liver disease. Curr Opin Gastroenterol 31(3):184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korolenko TA, Ovsyukova MV, Bgatova NP, Ivanov ID, Makarova SI, Vavilin VA, Popov AV, Yuzhik EI, Koldysheva EV, Korolenko EC (2022) Trehalose activates hepatic and myocardial autophagy and has anti-inflammatory effects in db/db diabetic mice. Life 12(3):442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhla A, Blei T, Jaster R, Vollmar B (2011) Aging is associated with a shift of fatty metabolism toward lipogenesis. J Gerontol Ser A: Biomed Sci Med Sci 66(11):1192–1200

    Article  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of ageing. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi A, Fallah H, Shahouzehi B, Najafipour H (2017) miR-33 inhibition attenuates the effect of liver X receptor agonist T0901317 on expression of liver X receptor alpha in mice liver. ARYA Atheroscler 13(6):257

    PubMed  PubMed Central  Google Scholar 

  • Mollica M, Iossa S, Soboll S, Liverini G (2001) Acetyl-L-carnitine treatment stimulates oxygen consumption and biosynthetic function in perfused liver of young and old rats. Cell Mol Life Sci CMLS 58:477–484

    Article  PubMed  CAS  Google Scholar 

  • Murotomi K, Arai S, Suyama A, Harashima A, Nakajima Y (2019) Trehalose attenuates development of nonalcoholic steatohepatitis associated with type 2 diabetes in TSOD mouse. J Funct Foods 56:303–311

    Article  CAS  Google Scholar 

  • Narita H, Tanji K, Miki Y, Mori F, Wakabayashi K (2019) Trehalose intake and exercise upregulate a glucose transporter, GLUT8, in the brain. Biochem Biophys Res Commun 514(3):672–677

    Article  PubMed  CAS  Google Scholar 

  • Nunes VS, da Silva Ferreira G, Quintão ECR (2022) Cholesterol metabolism in aging simultaneously altered in liver and nervous system. Aging (Albany NY) 14(3):1549

    Article  PubMed  CAS  Google Scholar 

  • Pagliassotti MJ, Estrada AL, Hudson WM, Wei Y, Wang D, Seals DR, Zigler ML, LaRocca TJ (2017) Trehalose supplementation reduces hepatic endoplasmic reticulum stress and inflammatory signaling in old mice. J Nutr Biochem 45:15–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papsdorf K, Brunet A (2019) Linking lipid metabolism to chromatin regulation in aging. Trends Cell Biol 29(2):97–116

    Article  PubMed  CAS  Google Scholar 

  • Parini P, Angelin B, Rudling M (1999) Cholesterol and lipoprotein metabolism in aging: reversal of hypercholesterolemia by growth hormone treatment in old rats. Arterioscler Thromb Vasc Biol 19(4):832–839

    Article  PubMed  CAS  Google Scholar 

  • Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15(5):675–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodgers JT, Puigserver P (2007) Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci 104(31):12861–12866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, Ido Y (2010) AMPK and SIRT1: a long-standing partnership? Am J Physiol-Endocrinol Metab 298(4):E751-60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, Vezzoli G, Tedesco B, Meroni M, Messi E (2019) Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 15(4):631–651

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11(2):230–241

    Article  PubMed  CAS  Google Scholar 

  • Shafiei B, Shabani M, Afgar A, Rajizadeh MA, Nazari-Robati M (2022) Trehalose attenuates learning and memory impairments in aged rats via overexpression of miR-181c. Neurochem Res 47(11):3309–3317

    Article  PubMed  CAS  Google Scholar 

  • Stachowicz A, Wiśniewska A, Kuś K, Kiepura A, Gębska A, Gajda M, Białas M, Totoń-Żurańska J, Stachyra K, Suski M (2019) The influence of trehalose on atherosclerosis and hepatic steatosis in apolipoprotein E knockout mice. Int J Mol Sci 20(7):1552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walker AK, Yang F, Jiang K, Ji J-Y, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24(13):1403–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan J, Wu X, Chen H, Xia X, Song X, Chen S, Lu X, Jin J, Su Q, Cai D (2020) Aging-induced aberrant RAGE/PPARα axis promotes hepatic steatosis via dysfunctional mitochondrial β oxidation. Aging Cell 19(10):e13238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki T, Ihato M (2022) Peroxisome proliferator-activated receptor α has a protective effect on fatty liver caused by excessive sucrose intake. Biomedicines 10(9):2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Isao U, Yuji M, Koichi T, Shiho F, Agussalim B, Hikari S, Satoko S, Kazuya H, Manabu I (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Physiol-Endocrinol Metab 297(5):E1179–E1186

    Article  Google Scholar 

Download references

Funding

This study was funded by Kerman University of Medical Sciences (Grant No. 400000186).

Author information

Authors and Affiliations

Authors

Contributions

Mahdieh Nazari‑Robati: conceptualization, funding acquisition, methodology, supervision; Mahdis Rahimi Naiini: investigation, data analysis, writing—original draft; Beydolah Shahouzehi: methodology, writing—review and editing; Shahrzad Azizi: investigation, data analysis; Bentolhoda Shafiei: investigation. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Mahdieh Nazari-Robati.

Ethics declarations

Ethics approval

All animal experiments used in this research were approved by the ethics committee of Kerman University of Medical Sciences (IR.KMU.AH.REC.1400.074) and adhered to national guidelines for experiments involving laboratory animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Trehalose activated SIRT1/AMPK axis in aged liver.

• Trehalose regulated SREBP-1c/PPAR-α in aged liver.

• Trehalose ameliorated lipid accumulation in aged liver.

• Trehalose reduced histopathological scores in aged liver.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naiini, M.R., Shahouzehi, B., Azizi, S. et al. Trehalose-induced SIRT1/AMPK activation regulates SREBP-1c/PPAR-α to alleviate lipid accumulation in aged liver. Naunyn-Schmiedeberg's Arch Pharmacol 397, 1061–1070 (2024). https://doi.org/10.1007/s00210-023-02644-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02644-w

Keywords

Navigation