Skip to main content

Advertisement

Log in

Phytochemistry and biological activity of Erigeron annuus (L.) Pers

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Erigeron annuus L. is a flowering herb of North America, Europe, Asia and Russia. This plant is used as folk medicine in China for the cure of indigestion, enteritis, epidemic hepatitis, haematuria and diabetes. Phytochemical studies showed the presence of 170 bioactive compounds like coumarins, flavonoids, terpenoids, polyacetylenic compounds; γ-pyrone derivatives, sterols and various caffeoylquinic acids derived from the essential oil and organic extracts from its various parts such as aerial parts, roots, leaves, stems and flowers. The pharmacological studies demonstrated various extracts and the compounds of E. annuus to exhibit anti-fungal, anti-atherosclerosis, anti-inflammatory, antidiabetic, phytotoxic, cytoprotective, antiobesity and antioxidant activities. This article covers a critical compendious on geographical distribution, botanical description, phytochemistry, ethnomedicinal uses and pharmacological activities of E. annuus. However, further in-depth studies are needed to determine the medical uses of E. annuus and its chemical constituents, pharmacological activities and clinical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

Abbreviations

E. annuus :

Erigeron annuus

GC/MS:

Gas chromatography/mass spectrometry

RI:

Retention index

1H NMR:

Hydrogen nuclear magnetic resonance

ACAT, acyl-CoA:

Cholesterol acyltransferase

HaCaT:

Human epidermal keratinocyte cell line

Lp-PLA2:

Lipoprotein-associated phospholipase A2 enzyme

LDL:

Low density lipoprotein

NO:

Nitric oxide

PGE 2 :

Prostaglandin E2

TNF-α:

Tumour necrosis factor

IL-1β :

Interleukin-1

iNOS:

Nitric oxide synthases

COX-2:

Cyclooxygenase-2

LPS:

Lipopolysaccharides

NF-Κb:

Nuclear factor kappa light chain enhancer of activated B cells

ppm:

Parts per million

IC:

Inhibitory concentration

AGES:

Advanced glycation end products

RLAR:

Rat lens aldose reductase

BEL7402:

Human liver carcinoma cell

SRB:

Sulphorhodamine

DMSO:

Dimethylsulfoxide

MTCC:

Microbial type culture collection

EO:

Essential oil

ABTS:

2,2′-Azinobis-(3-ethylenebenzothiazoline)-6-sulfonic acid

EC:

Effective concentration

PC:

Pheochromocytoma

DCFH-DA:

2’,7’-Dichlorofluorescein diacetate

LDH:

Lactate dehydrogenase

AD:

Alzheimer’s disease

MFC:

For minimal fungicidal concentrations

MIC:

Minimum inhibitory concentration

EC :

Escherichia coli

PA:

Pseudomonas aeruginosa

AH:

Aeromonas hydrophila

KP:

Klebsiella pneumoniae

BS:

Bacillus subtilis

SC:

Steptomyces candidus

References

  • Albuquerque CD et al (2006) Antimicrobial action of the essential oil of Lippia gracilis Schauer Cynthia. Braz Arch Biol Technol 49(4):527–535

    Article  Google Scholar 

  • Bakkali F et al (2008) Biological effects of essential oils-a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Bar B, Schulze W (1996) Composition of the essential oil of the flower heads of Matricariaperforata. Planta Med 62:329–332

    Article  Google Scholar 

  • Bennington CC, Stratton DA (1998) Field tests of density-and frequency-dependent selection in E. annuus (Compositae). Am J Bot 85(4):540–545

    Article  CAS  PubMed  Google Scholar 

  • Blackie JA et al (2003) The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 13:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Bloomer JC et al (2001) 1-(Aryl piperazinyl amidoalkyl)-pyrimidones: orally active inhibitors of lipoprotein-associated phospholipase A2. Bioorg Med Chem Lett 11:1925–1929

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann F et al (1983) Two sesquiterpenes from Senecio species. Phytochem 22:1675–1677

    Article  CAS  Google Scholar 

  • Brown MS, Dana SE, Goldstein JL (1975) Cholsterol ester formation in cultured human fibroblasts. J Biol Chem 250:4025–4027

    Article  CAS  PubMed  Google Scholar 

  • Canel C (2000) Molecules of interest podophyllotoxin. Phytochem 54:115–120

    Article  CAS  Google Scholar 

  • Chang ST (2001) Antioxidant activity of extracts from Acacia bark and heartwood. J Agric Food Chem 49:3420–3424

    Article  CAS  PubMed  Google Scholar 

  • Choi YH et al (2019) Erigeron annuus (L.) Pers. extract inhibits reactive oxygen species (ROS) production and fat accumulation in 3T3-L1 cells by activating an AMP-dependent kinase signaling pathway. Antioxidants 8(5):E13910.3390/antiox8050139

  • Choudhary MI et al (2006) Cinnamate derivatives of fructo-oligosaccharides from Lindelofia stylosa. Carbohyd Res 341:2398–2405

    Article  CAS  Google Scholar 

  • Christensen LP (2008) Polyacetylenes distribution in higher plants, pharmacological effects and analysis, In Thin layer chromatography in phytochemistry. Eds CRC Press Boca Raton FL USA 765–767

  • CLSI- Clinical and Laboratory Standards Institute (2009) Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Approved Standard 29:1–65

    Google Scholar 

  • Corriveau CC, Danner RL (1993) Endotoxin as a therapeutic target in septic shock. Infectious Agents and Disease Pub Med 2(1):35–43

    CAS  Google Scholar 

  • Cui K et al (2004) Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28:771–799

    Article  CAS  PubMed  Google Scholar 

  • Daisie (2014) Delivering alien invasive species inventories for Europe. http://www.europe-aliens.org/

  • Dhifi W et al (2016) Essential oil’s chemical characterization and investigation of some biological activities: a critical review. Medicines (basel) 3(25):2–16

    Google Scholar 

  • DiPersio CM (2016) Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 365:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Do JC et al (1992) Flavonoids from the leaves of Polygal japonica. Pharmacogn 23:9–13

    CAS  Google Scholar 

  • Dominick MA et al (1993) Subacute toxicity of a novel inhibitor of Acyl-CoA: cholesterol acyltransferase in Beagle Dogs. Fundam Appl Toxicol 20:217–224

    Article  CAS  PubMed  Google Scholar 

  • Dubey GKC, Matsumoto TC (1988) Sterol composition of Erigeron karwinskayanus. J Indian Chem Soc 65:739–740

    CAS  Google Scholar 

  • Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother Res 21:308–323

    Article  CAS  PubMed  Google Scholar 

  • efloraofindia (2007-2016) Accessed from Erigeron annuus on 24 February 2023

  • Flora of China Editorial Committee of Chinese Academy of Sciences, (1985) The Flora of China. Science Press Beijing 74:326–327

    Google Scholar 

  • Gottlieb HE, Ramaiah PA, Lavie D (1985) 13C NMR Signal assignment of friedelin and 3α-hydroxyfriedelan-2-one. Magn Reson Chem 23:616–620

    Article  CAS  Google Scholar 

  • Grover RK, Moore JD (1962) Toxicometric studies of fungicides against brown rot organisms Sclerotinia fructicola and S. laxa. Phytopathology 52:876–880

    CAS  Google Scholar 

  • Grundman M, Grundman M, Delaney P (2002) Antioxidant strategies for Alzheimer’s disease. Proc Nutr Soc 61:191–202

    Article  CAS  PubMed  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95:853–860

    Article  CAS  PubMed  Google Scholar 

  • Han XH et al (2007) Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 30:13–17

    Article  CAS  PubMed  Google Scholar 

  • Harris SG et al (2002) Prostaglandins as modulators of immunity. Trends Immunol 23(3):144–150

    Article  CAS  PubMed  Google Scholar 

  • Hase T et al (1995) Revised structure for hortensin, a flavonid from Millingtoniahortensis. Phytochem 40:287–290

    Article  CAS  Google Scholar 

  • Hashidoko YA (1995) Pyromeconic acid and its glucosidic derivatives from leaves of E. annuus, and the siderophile activity of pyromeconic acid. Biosci Biotech Biochem 59(5):886–890

    Article  CAS  Google Scholar 

  • Heo HJ (2001) Protective effect of 4,5-dihydroxy-3’,6,7-trimethoxyflavone from Artemisia asiatica against A β-induced oxidative stress in PC12 cells. Amyloid 8:194–201

    Article  CAS  PubMed  Google Scholar 

  • Hilty J (2020). “Annual Fleabane (Erigeron annuus)”, Illinois Wildflowers

  • Hu JF et al (1998) New sesquiterpenes and other constituents from Senecio flammeus. Indian J Chem 37:607–609

    Google Scholar 

  • Hu TY, Huang H, Guo SL (2007) Fang. Niche characteristic of exotic weeds in suburb and the impacts on biodiversity. Guangxi Zhiwu / Guihaia 27(6): 873–881

  • Iijima T, Iijima Y, Kikuchi M (2003a) Two new cyclopentenone derivatives and a new cyclooctadienone derivative from E. annuus (L.) PERS., Erigeron philadelphicus L. and Erigeron sumatrensis RETZ. Chem Pharm Bull 51(7):894–896

    Article  CAS  Google Scholar 

  • Iijima T, Yaoita Y, Kikuchi M (2003b) Five new sesquiterpenoids and a new diterpenoid from E. annuus (L.) PERS., Erigeron philadelphicus L. and Erigeron sumatrensis RETZ. Chem Pharm Bull 51(5):545–549

    Article  CAS  Google Scholar 

  • Itokawa H, Matsumoto H, Mihashi S (1983) Isolation of oppositane and cycloeudesmane type sesquiterpeneoids from Torilis Japonica. DC Chem Lett 1253–1256

  • Jakupovie J, Castro V, Bohlmann F (1987) Further sesquiterpene lactones from costa ricaneupatorieae. Phytochemistry 6:451–455

    Article  Google Scholar 

  • Jang DS et al (2008) Constituents of the flowers of E. annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch Pharmacal Res 31:900–904

    Article  CAS  Google Scholar 

  • Jang DS et al (2009) 3, 5-Di-O-caffeoyl-epi-quinic acid from the leaves and stems of E annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Biol Pharma Bull 33(2):329–333

    Article  Google Scholar 

  • Jeong TS et al (2004) Inhibitory effects of multi-substituted benzylidenzethiazolidine-2,4-diones on LDL oxidation. Bioorg Med Chem 12:4017–4023

    Article  CAS  PubMed  Google Scholar 

  • Jeong CH et al (2010) Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem 118:278–282

    Article  CAS  Google Scholar 

  • Jeong CH et al (2011) Neuroprotective and anti-oxidant effects of caffeic acid isolated from E. annuus leaf. Chinese medicine 6:25

  • Jiangsu College of New Medicine (1997) A Dictionary of the Traditional Chinese Medicines. People Hygiene Publisher, Beijing p 4

  • Jo MJ et al (2013) Roots of E. annuus attenuate acute inflammation as mediated with the inhibition of NF-κB-associated nitric oxide and prostaglandin E2 production. Evidence-Based Complementary and Alternative Medicine 1–10

  • Joyce CW et al (2000) ACAT1 and ACAT2 membrane topology segregates a serine reidue essential for activity to opposite sides of the endotherium reticulum membrane. Mol Biol Cell 11:3675–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  PubMed  Google Scholar 

  • Kalousova M et al (2004) Advanced glycation end products in clinical nephrology. Kidney Blood Press Res 27:18–28

    Article  CAS  PubMed  Google Scholar 

  • Kaneta M, Hikichi H, Endo S (1978) Identification of flavones in sixteen Compositae species. Agric Biol Chem 42:475–477

    CAS  Google Scholar 

  • Katz B et al (1984) Characterization of the enhanced paw edema response to carrageenan and dextran in 2,3,7,8-tetrachlorodibenzo-pdioxin-treated rats. J Pharmacol Exp Ther 230(3):670–677

    CAS  PubMed  Google Scholar 

  • Kawanishi K, Ueda H, Moriyasu MC (2003) Aldose reductase inhibitors from the nature. Med Chem 10:1353–1374

    CAS  Google Scholar 

  • Kim DH (2005) Ergosterol peroxide from flowers of E. annuus L. as an anti-atherosclerosis agent. Arch Pharm Res 28(5):541–545

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Kim K (2003) Protein glycation inhibitory and antioxidative activities of some plant extracts in vitro. J Agric Food Chem 51:1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Tomoda H, Nishida H (1994) Pyripyopenes, novel inhibitors of acyl-CoA: Cholestrol acyl transferase produces by Aspergllus Fumigatus. J Antibiot 47:154–162

    Article  CAS  Google Scholar 

  • Kim DK et al (1996) Phytochemical constituents from Aconitum pseudolaeve Var. Erectum J Pharmacogn 27:75–79

    CAS  Google Scholar 

  • Kim DH et al (2004) Development of biologically active compounds from edible plant sources XIII. Isolation of triterpenoids from the flower of E. annuus L. Hwahakhoeji 47:422–425

    CAS  Google Scholar 

  • Kim SJ et al (2005) Nitric oxide production and inducible nitric oxide synthase expression induced by Prevotellanigrescens lipopolysaccharide. FEMS Immunol Med Microbiol 43(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Kim YW et al (2008) Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κBdependentiNOS and proinflammatory cytokines production. Br J Pharmacol 154(1):165–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SC et al (2013) Roots of Erigeron annuus inhibits acute inflammatory response through NF-κB inactivation. Toxicol Lett 221 https://doi.org/10.1016/j.toxlet.2013.05.314

  • Kim DY et al (2018) Chemical composition of essential oil from E. annuus (L.) Pers. Flower and its effect on migration and proliferation in keratinocyte. JEOBP 1146–1154

  • Kitajima J et al (2002) Sesquiterpenoids of Torilis japonica fruit. Phytochem 2059:811–815

    Article  Google Scholar 

  • Kleinert H, Schwarz PM, Orstermann UF (2003) Regulation of the expression of inducible nitric oxide synthase. J Biol Chem 384(11):1343–1364

    CAS  Google Scholar 

  • Kokubun T, Harborne JB (1995) Phytoalexin induction in the sapwood of plants of the Maloideae (Rosaceae): biphenyls or dibezofurans. Phytochem 40:1649–1654

    Article  CAS  Google Scholar 

  • Kou MC et al (2009) Cyphomandrabetacea Sendt. phenolics protect LDL from oxidation and PC12 cells from oxidative stress. Lebenson Wiss Technol 42:458–463

    Article  CAS  Google Scholar 

  • Kubes P, Mc Cafferty DM (2000) Nitric oxide and intestinal inflammation. Am J Med 109(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Kumar V et al (2014) Chemical composition and antifungal activity of essential oils from three Himalayan Erigeron species. LWT-Food Science and Technology 56:278–283

    Article  CAS  Google Scholar 

  • Kumar V et al (2017) In vitro antimicrobial activity of essential oils and their acetylenic constituent. IJNPR 8(1):63–68

    CAS  Google Scholar 

  • Kumar S, Abbas F, Ali I, Gupta MK, Kumar S, Garg M, Kumar D (2023) Integrated network pharmacology and in-silico approaches to decipher the pharmacological mechanism of Selaginella tamariscina in the treatment of non-small cell lung cancer. Phytomedicine plus 3:100419. https://doi.org/10.1016/j.phyplu.2023.100419

    Article  Google Scholar 

  • Kumar S, Sharma, AK, Lalhlenmawia H, Kumar D. (2021). Natural compounds targeting major signaling pathways in lung cancer. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting cellular signalling pathways in lung diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_37

  • Chen et al (2022). “Erigeron annuus”, Flora of China – via eFloras.org, Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA

  • Lee MH, Son YK, Han YN (2002) Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch Pharm Res 25:842–850

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Nam KA, Heo YH (2003) Cytotoxic activity and G2/M cell cycle arrest mediated by antofine, a phenanthroindolizidine alkaloid isolated from Cynanchum paniculatum. Planta Med 9:21–25

    Article  CAS  Google Scholar 

  • Leme JG et al (1973) Pharmacological analysis of the acute inflammatory process induced in the rat’s paw by local injection of carrageenin and by heating. Br J Pharmacol 48(1):88–96

    Article  Google Scholar 

  • Li X, Zhang Q, Gao K (2004) Chemical constituents of E. annuus. Xibei Zhiwu Xuebao 24:2096–2099

    CAS  Google Scholar 

  • Li X et al (2005) New sesquiterpenes from E. annuus. Planta Med 71:268–272

    Article  CAS  PubMed  Google Scholar 

  • Li X, Pan J, Gao K (2006) γ-Pyranone derivatives and other constituents from E. annuus. Pharmazie 61:474–477

    CAS  PubMed  Google Scholar 

  • Liao JC (2002) Sesquiterpenes from Ligularia hodgsonii. J Chin Chem Soc 49:129–132

    Article  CAS  Google Scholar 

  • Lin M, Hao JH, Chen GQ (2012) Composition and distribution of invasive alien plants in Suzhou area. Journal of Plant Resources and Environment 21(3):98–104

    Google Scholar 

  • Lis A et al (2008) Chemical composition of the essential oil from the herb of E. annuus (L.) Pers. J Essent Oil Res 20:229–232

    Article  CAS  Google Scholar 

  • Lu W et al (1999) Palladium (II)-catalyzed carboxylation of benzene and other aromatic compounds with carbon monoxide under very mild conditions. Organo Met Chem 580:290–294

    Article  CAS  Google Scholar 

  • Macphee CH et al (1999) Lipoprotein associated phophoplipase A2, Platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem J 338:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macphee CH et al (2005) Lipoprotein-associated phospholipase A2 as a target of therapy. Curr Opin Lipidol 16(4):442–446

    Article  CAS  PubMed  Google Scholar 

  • Makita Z et al (1993) Advanced glycosylation end products in patients with diabetic nephropathy. N Eng J Med 325:836–842

    Article  Google Scholar 

  • Maqua MP et al (1988) Compounds from Santolina Rosmarinifolia, subspecies rosmarinifolia and canescens. Phytochem 27:3664–3667

    Article  CAS  Google Scholar 

  • Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146

    Article  CAS  PubMed  Google Scholar 

  • Mathela DK, Mathela CS (1986) Polyacetylenes and terpenoids from Erigeron Karwinskyanus. J Indian Chem Soc 63:603–604

    CAS  Google Scholar 

  • Mathela DK, Pant AK, Mathela CS (1984) A pyrone glycoside from Erigeron karwinskyanus. Phytochem 23:2090–2091

    Article  CAS  Google Scholar 

  • Matsuda H et al (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50:788–795

    Article  CAS  Google Scholar 

  • Matsuda H et al (2003) Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg Med Chem 11:15317–15323

    Article  Google Scholar 

  • Matsuo M (1996) Difference between normal and WHHL rabbits in susceptibility to the adrenal toxicity of an acyl CoA: cholesterol acyltransferase inhibitor, FR145237. Toxicol Appl Pharmacol 140:387–392

    Article  CAS  PubMed  Google Scholar 

  • Mitscher LA et al (1972) Antimicrobial agents from higher plants, introduction, rationale and methodology. Lloydia 35:157–166

    CAS  PubMed  Google Scholar 

  • Miyazawa M, Kameoka, (1979) The constituents of the essential oil from E. annuus. Agric Biol Chem 43:2199–2201

    CAS  Google Scholar 

  • Miyazawa M, Tokugawa M, Kameoka H (1981) The constituents of the essential oil from Erigeron philadelphicus. Agric Biol Chem 45:507–510

    CAS  Google Scholar 

  • Mohamed H, Abd ER (2006) A new Flavan from the aerial part of E. annuus. Chin Pharm J 58:95–104

    Google Scholar 

  • Monache GD et al (1993) Novel hypotensive agentsfrom Verbesina caracasana. Synthesis and pharmacology of caracasanamide. J Med Chem 36:2956–2963

    Article  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142

    CAS  PubMed  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2001) Performance Standards for Antimicrobial Susceptibility Testing (Suppl. 11) M100-S11, USA, Wayne

  • Nazaruk J, Kalemba D (2009) Chemical composition of the essential oils from the roots of Erigeron acris L. and E. annuus (L.) Pers. Molecules 14(7):2458–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazaruk J et al (2006) Investigation of the essential oil of Erigeron acris L. herb. J Essent Oil Res 18:88–90

    Article  CAS  Google Scholar 

  • Nazaruk J et al (2010) In vitro antiproliferative and antifungal activity of essential oils from Erigeron acris L. and E. annuus (L.) Pers. Z. Naturforsch 65c:642–646

    Article  Google Scholar 

  • Nerio LS, Olivero-Verbel J, Stashenko E (2010) Repellent activity of essential oils: a review. Bioresour Technol 101:372–378

    Article  CAS  PubMed  Google Scholar 

  • NOBANIS (2014) North European and Baltic network on invasive alien species., http://www.nobanis.org/

  • Oh H et al (2002) Germination inhibitory constituents from E. annuus. Phytochem 61:175–179

    Article  CAS  Google Scholar 

  • Pacanoski Z, Saliji A (2015) The first detailed report for invasive E. annuus (L.) Pers. (daisy fleabane) in Republic of Macedonia. Acad J Agri Res 3(9):204–212

    Google Scholar 

  • Park WY (1993) Phenolic compounds from Acalypha australis L. Kor J Pharmacogn 24:20–25

    CAS  Google Scholar 

  • Park HJ et al (2000) Sesquiterpenes from the leaves of Ligulariafischerivar. spiciformis. Planta Med 66:783–784

    Article  CAS  PubMed  Google Scholar 

  • Parmar, (1997) Novel chemo selective deesterification of esters of polyacetoxy aromatic acids by lipases. Tetrahedron 53:2163–2176

    Article  CAS  Google Scholar 

  • Peng C (1998) Computer-assisted structure elucidation: application of to the resonance assignment CISOC–SES and structure generation of betulinic acid. Magn Reson Chem 36:267–278

    Article  CAS  Google Scholar 

  • Peng LY et al (2002) Constituents from Lonicera japonica. Fitoterapia 71:713–715

    Article  Google Scholar 

  • Pieribaiesti JC (1988) Constituents of the essential oil of Erigeron polyacetyenes from Dendranthemazawadskii (Asteraceae). Planta Med 73:1089–1094

    Google Scholar 

  • Posadas M et al (2004) Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol 142(2):331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • POWO (2021) "Erigeron annuus (L.) Desf", Plants of the World Online (www.plantsoftheworldonline.org), Royal Botanic Gardens, Kew, (on 24 February 2023)

  • Priyanka S, Bisht D, Dwivedee BP, Latha S, Dash AK, Kumar D (2022) Identification and quantification of biological active constituents of Amritarishta, a herbal formulation. Indian J Traditional Knowl 21:754–759

    Google Scholar 

  • Pyo MK, Koo YK, Yun-Choi HS (2002) Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovata. Nat Prod Sci 8:147–151

    CAS  Google Scholar 

  • Rahbar S et al (2000) Novel inhibitors of advanced glycation endproducts (Part II). Mol Cell Biol Res Commun 3:360–366

    Article  CAS  PubMed  Google Scholar 

  • Rethy B et al (2007) Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part i Phytother Res 21:1200–1208

    Article  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans 24:790–795

    Article  CAS  PubMed  Google Scholar 

  • Roth BD, Blankley J, Hoefle ML (1992) Inhibitors of acyl – CoA : Cholestrol acyltranferase. Identification and structure activity relationship of a novel series of fatty acid anilide hypocholesterolemic agents. J Med Chem 35:1609–1617

    Article  CAS  PubMed  Google Scholar 

  • Rudel LL, Lee RG, Cockman TL (2001) Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol 12:121–127

    Article  CAS  PubMed  Google Scholar 

  • Sanz JF, Marco JA (1991) Einneues Butenolidaus Conyzabonariensis. Liebigs Ann Chem 399–400

  • Shougakukan Tokyo (1985) Shanghai scientific technological publishers and Shougakukan dictionary of Chinese Materia Medica 1:25

  • Sharma V, Kumar D, Dev K, Sourirajana A (2023) Anticancer activity of essential oils: Cell cycle perspective.S Afr J Bot 157:641–647

  • Sharma S, Shukla MK, Sharma KC et al (2022) Revisiting the therapeutic potential of gingerols against different pharmacological activities. Naunyn-Schmiedeberg’s Arch Pharmacol. https://doi.org/10.1007/s00210-022-02372-7

    Article  Google Scholar 

  • Shibata S et al (2012) A di-ponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J Immunol 189:3231–3241

    Article  CAS  PubMed  Google Scholar 

  • Shimoda K (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochem 67:2256–2261

    Article  CAS  Google Scholar 

  • Shukla MK, Monika TA, Verma R, Lalhlenmawia H, Bhattacharyya S, Bisht D, Singh A, Parcha P, Kumar D (2022) Unravelling the therapeutic potential of orchid plant against cancer. S Afr J Bot 150:69–79. https://doi.org/10.1016/j.sajb.2022.07.005

    Article  CAS  Google Scholar 

  • Shukla MM, Das AK, Gaurav A, Bisht D, Singh A, Kumar (2023) Recent plant-based nanomedicine and nanocarrier for cancer treatment, Nanotechnology for Drug Delivery and Pharmaceuticals, Academic Press, 187–206. https://doi.org/10.1016/B978-0-323-95325-2.00011-0

  • Silverstein RM, Bassler OC, Morrill TC (1981) In spectroscopic identification of organic compounds. John Wiley, New York 4:105–135

    Google Scholar 

  • Singh N (2001) Changing spectrum of invasive candidiasis and its therapeutic implications. Clin Microbiol Infect 7(2):1–7

    Article  CAS  PubMed  Google Scholar 

  • Sliskovic DR, Picard JA, Krause BR (2002) 3-ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. Prog Med Chem 39:121–171

    Article  CAS  PubMed  Google Scholar 

  • Sorensen NA, Stavholt K (1950) Studies related to naturally-occuring acetylene compounds. VI. The essential oils of some species of Erigeron. Acta Chem Scand 4:1575–1583

    Article  CAS  Google Scholar 

  • Srivastava S, Singh RP (2001) Antifungal activity of the essential oil of Murraya koenigii (L.) Spreng. Indian Perfumer 45:49–51

    CAS  Google Scholar 

  • Sul DG (2009) Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci 84:257–262

    Article  CAS  PubMed  Google Scholar 

  • Sung MS et al (2011) Anti-inflammatory effect E. annuusL. Flower extract though heme oxygenase-1 inhibition in Raw264.7 macrophages. J Korean Soc Food Sci Nutr 40:1507–1511

    Article  CAS  Google Scholar 

  • Timmermann BN et al (1983) Constituents of Chrysothamnuspaniculatus 3: 3,4,5-Tricaffeoylquinic acid (a new shikimate prearomatic) and 3,4-, 3,5- and 4,5-di-caffeoylquinic acids. J Nat Prod 46:365–368

    Article  CAS  Google Scholar 

  • Tori K, Seo S, Shimaoka A, Tomita Y (1974) Carbon-13 NMR spectra of olean-12-enes. Full signal assignments including quaternary carbon signals assigned by use of indirect 13C, 1H spin couplings. Tetrahedron Lett 48:4227–4230

    Article  Google Scholar 

  • Tronvold GM et al (1953) Studies related to naturally occurring acetylene compounds. XI. Further investigations on the composition of essential oils from the genus Erigeron. Acta Chem Scand 7:1375–1387

    Article  CAS  Google Scholar 

  • USDA, NRCS (2022). “Erigeron annuus”, the PLANTS database (plants.usda.gov), Greensboro, North Carolina: National Plant Data Team. https://plants.sc.egov.usda.gov

  • Valencia A, Moran J (2004) Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 36:1112–1125

    Article  CAS  PubMed  Google Scholar 

  • Vidari G et al (2006) Fungitoxic metabolites from Erigeron apiculatus. Fitoterapia 77:318–320

    Article  CAS  PubMed  Google Scholar 

  • Watson WH, Zhao Y, Chawla RK (1999) S-adenosylmethionine attenuates the lipopolysaccharide-induced expression of the gene for tumour necrosis factor α. Biochem J 342(1):21–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie WD (2012) Sesquiterpenoids from Carpesium divaricatum and their cytotoxic activity. Fitoterapia 83(8):1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Xin L, Jing P, Kun G (2004) γ- Pyranone derivatives and other constituents from Erigeron annuus. Pharmazie 61:474–477

    Google Scholar 

  • Xu FM et al (2004) Structures of new sesquiterpenes and hepatoprotective constituents from the Egyptian herbal medicine. Cyperus Longus J Nat Prod 67:569–576

    Article  CAS  PubMed  Google Scholar 

  • Xue M et al (2004) Activated protein C stimulates proliferation, migration and wound closure, inhibits apoptosis and upregulates MMP-2 activity in cultured human keratinocytes. Exp Cell Res 299:119–127

    Article  CAS  PubMed  Google Scholar 

  • Yoo HN, Jang DS, Kim JS (2008a) Phytochemical constituents of the roots of E. annuus. J. Korean Soc. Appl Biol Chem 51(4):305–308

    CAS  Google Scholar 

  • Yoo NH et al (2008b) Erigeroflavanone, a flavanone derivative from the flowers of E. annuus with protein glycation and aldose reductase inhibitory activity. J Nat Prod 71(4):713–715

    Article  CAS  PubMed  Google Scholar 

  • Yoon MS et al (2014) Skin regeneration effect and chemical composition of essential oil from Artemisia Montana. Nat Prod Commun 9:1619–1622

    PubMed  Google Scholar 

  • Yue JM et al (1994) A sesquiterpene and other constituents from Erigeron breviscapus. Phytochem 36:717–719

    Article  CAS  Google Scholar 

  • Zhang L et al (2020) Antioxidant and enzyme-inhibitory activity of extracts from Erigeron annuus flower. Ind Crops Prod 148:112283

    Article  CAS  Google Scholar 

  • Zheng Y et al (2021) Anti-obesity effect of Erigeron annuus (l.) pers. extract containing phenolic acids. Foods 10(6):1266. https://doi.org/10.3390/foods10061266

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.R: Collection of the information, drafting of the manuscript; U.R.L., R.C.: Data curation; SP, S.K.U and DK: Analysis, review and editing. All authors approved the final submitted version of the manuscript. The authors confirm that no paper mill and artificial intelligence was used.

Corresponding authors

Correspondence to Swati Pundir or Deepak Kumar.

Ethics declarations

Ethical approval

Since no animal experiments/animal handling was done, so there is no need for ethical approval for publishing this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, R., Pundir, S., Lal, U.R. et al. Phytochemistry and biological activity of Erigeron annuus (L.) Pers. Naunyn-Schmiedeberg's Arch Pharmacol 396, 2331–2346 (2023). https://doi.org/10.1007/s00210-023-02518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-023-02518-1

Keywords

Navigation