Skip to main content

Advertisement

Log in

Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Learning and memory deficits appear in chronic diabetes and valproic acid has been proved to be beneficial in neurodegenerative diseases. Hence, the current study investigated the effectiveness of chronic valproate treatment for diabetes-induced memory impairment and increased levels of hippocampal apoptotic caspases. This study was conducted in adult male C57B15/J mice. Diabetes, which was induced by alloxan (150 mg/kg; i.p.), was confirmed when fasting blood sugar (FBS) was > 200 mg/dl. Sodium valproate (100 mg/kg; i.p.) was administrated to the diabetic and non-diabetic groups, every 72 h for 2 months. Next, all groups were evaluated for memory performance using the radial maze and shuttle box. After FBS measurement, animals were killed and the hippocampus was extracted and prepared for ELISA to assess caspase levels. Diabetic animals had significantly high FBS and memory impairment 2 months after the alloxan injection. Hippocampal levels of caspases 3, 6, and 8 were significantly higher in the diabetic group than in the control group. However, valproate treatment of diabetic animals significantly improved memory performance in both the radial maze and shuttle box and reduced the elevated levels of hippocampal apoptotic caspases, in comparison with diabetic animals. Chronic administration of valproate seems to have beneficial effects on diabetic neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akindele AJ, Otuguor E, Singh D, Ota D, Benebo AS (2015) Hypoglycemic, antilipidemic and antioxidant effects of valproic acid in alloxan-induced diabetic rats. Eur J Pharmacol 762:174–183

    Article  PubMed  CAS  Google Scholar 

  • Alves MG, Oliveira PF, Socorro S, Moreira PI (2012) Impact of diabetes in blood-testis and blood-brain barriers: resemblances and differences. Curr Diabetes Rev 8:401–412

    Article  PubMed  CAS  Google Scholar 

  • Biermann J, Grieshaber P, Goebel U, Martin G, Thanos S, Di Giovanni S, Lagreze WA (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmol Vis Sci 51:526–534

    Article  PubMed  Google Scholar 

  • Biermann J, Boyle J, Pielen A, Lagreze WA (2011) Histone deacetylase inhibitors sodium butyrate and valproic acid delay spontaneous cell death in purified rat retinal ganglion cells. Mol Vis 17:395–403

    PubMed  PubMed Central  CAS  Google Scholar 

  • Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35:631–640

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Lu H, Teng J (2013) Carvacrol attenuates diabetes-associated cognitive deficits in rats. J Mol Neurosci 51:813–819

    Article  PubMed  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erbas O, Oltulu F, Yilmaz M, Yavasoglu A, Taskiran D (2016) Neuroprotective effects of chronic administration of levetiracetam in a rat model of diabetic neuropathy. Diabetes Res Clin Pract 114:106–116

    Article  PubMed  CAS  Google Scholar 

  • Han J, Tan P, Li Z, Wu Y, Li C, Wang Y, Wang B, Zhao S, Liu Y (2014) Fuzi attenuates diabetic neuropathy in rats and protects schwann cells from apoptosis induced by high glucose. PLoS One 9:e86539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hao Y, Creson T, Zhang L, Li P, du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24:6590–6599

    Article  PubMed  CAS  Google Scholar 

  • Jia D, Heng LJ, Yang RH, Gao GD (2014) Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-kappaB-mediated inflammatory pathways. Neuroscience 258:228–237

    Article  PubMed  CAS  Google Scholar 

  • Jin G, Bausch D, Knightly T, Liu Z, Li Y, Liu B, Lu J, Chong W, Velmahos GC, Alam HB (2011) Histone deacetylase inhibitors enhance endothelial cell sprouting angiogenesis in vitro. Surgery 150:429–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan S, Jena G, Tikoo K (2015) Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp Mol Pathol 98:230–239

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Kumar S, Jena G (2016) Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie 125:42–52

    Article  PubMed  CAS  Google Scholar 

  • Kowluru RA, Chakrabarti S, Chen S (2004) Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol 41:194–199

    Article  PubMed  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  PubMed  CAS  Google Scholar 

  • Luo HM, Hu S, Bai HY, Wang HB, du MH, Lin ZL, Ma L, Wang H, Lv Y, Sheng ZY (2014) Valproic acid treatment attenuates caspase-3 activation and improves survival after lethal burn injury in a rodent model. J Burn Care Res 35:e93–e98

    Article  PubMed  Google Scholar 

  • Masuch A, Shieh CH, van Rooijen N, van Calker D, Biber K (2016) Mechanism of microglia neuroprotection: involvement of P2X7, TNFα, and valproic acid. Glia 64:76–89

    Article  PubMed  Google Scholar 

  • Nardin P, Zanotto C, Hansen F, Batassini C, Gasparin MS, Sesterheim P, Goncalves CA (2016) Peripheral levels of AGEs and astrocyte alterations in the hippocampus of STZ-diabetic rats. Neurochem Res 41:2006–2016

    Article  PubMed  CAS  Google Scholar 

  • Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B (2015) Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int 2015:515042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro RMC, de Lima MNM, Portal BCD, Busato SB, Falavigna L, Ferreira RDP, Paz AC, de Aguiar BW, Kapczinski F, Schröder N (2015) Long-lasting recognition memory impairment and alterations in brain levels of cytokines and BDNF induced by maternal deprivation: effects of valproic acid and topiramate. J Neural Transm 122:709–719

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Sajja RK, Naik P, Cucullo L (2014) Diabetes mellitus and blood-brain barrier dysfunction: an overview. Aust J Pharm 2:125

    Google Scholar 

  • Rabadiya S, Bhadada S, Dudhrejiya A, Vaishnav D, Patel B (2017) Magnesium valproate ameliorates type 1 diabetes and cardiomyopathy in diabetic rats through estrogen receptors. Biomed Pharmacother 97:919–927

    Article  PubMed  CAS  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  PubMed  CAS  Google Scholar 

  • Rouaux C, Panteleeva I, Rene F, Gonzalez de Aguilar JL, Echaniz-Laguna A, Dupuis L, Menger Y, Boutillier AL, Loeffler JP (2007) Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci 27:5535–5545

    Article  PubMed  CAS  Google Scholar 

  • Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748

    Article  PubMed  CAS  Google Scholar 

  • Saha RN, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13:539–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Said G (2007) Diabetic neuropathy—a review. Nat Rev Neurol 3:331

    Article  Google Scholar 

  • Said G, Lacroix C, Lozeron P, Ropert A, Planté V, Adams D (2003) Inflammatory vasculopathy in multifocal diabetic neuropathy. Brain 126:376–385

    Article  PubMed  Google Scholar 

  • Schmeichel AM, Schmelzer JD, Low PA (2003) Oxidative injury and apoptosis of dorsal root ganglion neurons in chronic experimental diabetic neuropathy. Diabetes 52:165–171

    Article  PubMed  CAS  Google Scholar 

  • Sezik E, Aslan M, Yesilada E, Ito S (2005) Hypoglycaemic activity of Gentiana olivieri and isolation of the active constituent through bioassay-directed fractionation techniques. Life Sci 76:1223–1238

    Article  PubMed  CAS  Google Scholar 

  • Silva MR, Correia AO, Dos Santos GCA, Parente LLT, de Siqueira KP, Lima DGS, Moura JA, da Silva Ribeiro AE, Costa RO, Lucetti DL, Lucetti ECP, Neves KRT, de Barros Viana GS (2018) Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol Biochem Behav 167:17–28

    Article  PubMed  CAS  Google Scholar 

  • Suda S, Ueda M, Nito C, Nishiyama Y, Okubo S, Abe A, Aoki J, Suzuki K, Sakamoto Y, Kimura K (2015) Valproic acid ameliorates ischemic brain injury in hyperglycemic rats with permanent middle cerebral occlusion. Brain Res 1606:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tai YT et al (2014) Low dose of valproate improves motor function after traumatic brain injury. Biomed Res Int 2014:980657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682

    Article  PubMed  CAS  Google Scholar 

  • Tuzcu M, Baydas G (2006) Effect of melatonin and vitamin E on diabetes-induced learning and memory impairment in rats. Eur J Pharmacol 537:106–110

    Article  PubMed  CAS  Google Scholar 

  • Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7:573–583

    Article  PubMed  CAS  Google Scholar 

  • Wang SB, Jia JP (2014) Oxymatrine attenuates diabetes-associated cognitive deficits in rats. Acta Pharmacol Sin 35:331–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z, Leng Y, Tsai L-K, Leeds P, Chuang D-M (2011) Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 31:52–57

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Tsai LK, Munasinghe J, Leng Y, Fessler EB, Chibane F, Leeds P, Chuang DM (2012) Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 43:2430–2436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xuan A-G, Pan XB, Wei P, Ji WD, Zhang WJ, Liu JH, Hong LP, Chen WL, Long DH (2015) Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer’s disease. Mol Neurobiol 51:300–312

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Qin X, Zhao X, Tong N, Gong Y, Zhang W, Wu X (2012a) Valproic acid regulates antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina. Curr Eye Res 37:429–437

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZZ, Gong YY, Shi YH, Zhang W, Qin XH, Wu XW (2012b) Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush. Neuroscience 224:282–293

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This study was supported by Arak University of Medical Sciences (Funding Nos. 2655 and 2688).

Author information

Authors and Affiliations

Authors

Contributions

MS was responsible for the study concept and design. PZ, MG, BA, and SH performed the acquisition of animal data. PZ, MG, and MS contributed to the analysis and interpretation of findings. PZ, MG, and MS drafted and revised the manuscript for important intellectual content. All authors critically reviewed and revised content, and approved the final version for publication.

Corresponding author

Correspondence to Mehdi Sadegh.

Ethics declarations

Statement on the welfare of animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Parvin Zareie and Mahsa Gholami had the same cooperation in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareie, P., Gholami, M., Amirpour-najafabadi, B. et al. Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice. Naunyn-Schmiedeberg's Arch Pharmacol 391, 1085–1092 (2018). https://doi.org/10.1007/s00210-018-1531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-018-1531-3

Keywords

Navigation