Skip to main content
Log in

Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

There are some indications that biased μ-opioid ligands may diversely affect μ-opioid receptor (MOR) properties. Here, we used confocal fluorescence recovery after photobleaching (FRAP) to study the regulation by different MOR agonists of receptor movement within the plasma membrane of HEK293 cells stably expressing a functional yellow fluorescent protein (YFP)-tagged μ-opioid receptor (MOR-YFP). We found that the lateral mobility of MOR-YFP was increased by (D-Ala2,N-MePhe4,Gly5-ol)-enkephalin (DAMGO) and to a lesser extent also by morphine but decreased by endomorphin-2. Interestingly, cholesterol depletion strongly enhanced the ability of morphine to elevate receptor mobility but significantly reduced or even eliminated the effect of DAMGO and endomorphin-2, respectively. Moreover, the ability of DAMGO and endomorphin-2 to influence MOR-YFP movement was diminished by pertussis toxin treatment. The results obtained by agonist-stimulated [35S]GTPγS binding assays indicated that DAMGO exhibited higher efficacy than morphine and endomorphin-2 did and that the efficacy of DAMGO, contrary to the latter agonists, was enhanced by cholesterol depletion. Overall, our study provides clear evidence that biased MOR agonists diversely affect receptor mobility in plasma membranes as well as MOR/G protein coupling and that the regulatory effect of different ligands depends on the membrane cholesterol content. These findings help to delineate the fundamental properties of MOR regarding their interaction with biased MOR ligands and cognate G proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nature Rev Neurosci 8:128–140

    Article  CAS  Google Scholar 

  • Almarza G, Sanchez F, Barrantes FJ (2014) Transient cholesterol effects on nicotinic acetylcholine receptor cell-surface mobility. PLoS One 9:e100346

    Article  PubMed  PubMed Central  Google Scholar 

  • Baier CJ, Gallegos CE, Levi V, Barrantes FJ (2010) Cholesterol modulation of nicotinic acetylcholine receptor surface mobility. Eur Biophys J 39:213–227

    Article  CAS  PubMed  Google Scholar 

  • Baker A, Sauliere A, Dumas F, Millot C, Mazeres S, Lopez A, Salome L (2007) Functional membrane diffusion of G-protein coupled receptors. Eur Biophys J 36:849–860

    Article  CAS  PubMed  Google Scholar 

  • Brejchova J, Sykora J, Ostasov P, Merta L, Roubalova L, Janacek J, Hof M, Svoboda P (2015) TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP. Biochim Biophys Acta 1848:781–796

    Article  CAS  PubMed  Google Scholar 

  • Briddon SJ, Hill SJ (2007) Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand-receptor complexes. Trends Pharmacol Sci 28:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carayon K, Mouledous L, Combedazou A, Mazeres S, Haanappel E, Salome L, Mollereau C (2014) Heterologous regulation of mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells. J Biol Chem 289:28697–28706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SR, Pan HL (2006) Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia. J Neurophysiol 95:3086–3096

    Article  CAS  PubMed  Google Scholar 

  • Cox BM, Christie MJ, Devi L, Toll L, Traynor JR (2015) Challenges for opioid receptor nomenclature: IUPHAR review 9. Br J Pharmacol 172:317–323

    Article  CAS  PubMed  Google Scholar 

  • Desai AJ, Harikumar KG, Miller LJ (2014) A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment. J Biol Chem 289:18314–18326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drastichova Z, Bourova L, Hejnova L, Jedelsky P, Svoboda P, Novotny J (2010) Protein alterations induced by long-term agonist treatment of HEK293 cells expressing thyrotropin-releasing hormone receptor and G(11)alpha protein. J Cell Biochem 109:255–264

    Article  CAS  PubMed  Google Scholar 

  • Emmerson PJ, Clark MJ, Medzihradsky F, Remmers AE (1999) Membrane microviscosity modulates mu-opioid receptor conformational transitions and agonist efficacy. J Neurochem 73:289–300

    Article  CAS  PubMed  Google Scholar 

  • Fernandes CC, Berg DK, Gomez-Varela D (2010) Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type. J Neurosci 30:8841–8851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaibelet G, Millot C, Lebrun C, Ravault S, Sauliere A, Andre A, Lagane B, Lopez A (2008) Cholesterol content drives distinct pharmacological behaviours of mu-opioid receptor in different microdomains of the CHO plasma membrane. Mol Membrane Biol 25:423–435

    Article  CAS  Google Scholar 

  • Gimpl G, Wiegand V, Burger K, Fahrenholz F (2002) Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog Brain Res 139:43–55

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Xu W, Yoon S-I, Chen C, Chong PL-G, Unterwald EM, Liu-Chen L-Y (2007) Agonist treatment did not affect association of mu opioid receptors with lipid rafts and cholesterol reduction had opposite effects on the receptor-mediated signaling in rat brain and CHO cells. Brain Res 1184:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaskolski F, Henley JM (2009) Synaptic receptor trafficking: the lateral point of view. Neuroscience 158:19–24

    Article  CAS  PubMed  Google Scholar 

  • Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ (2011) Multiple ligand-specific conformations of the beta(2)-adrenergic receptor. Nature Chem Biol 7:692–700

    Article  CAS  Google Scholar 

  • Kilander MBC, Dahlstrom J, Schulte G (2014) Assessment of frizzled 6 membrane mobility by FRAP supports G protein coupling and reveals WNT-frizzled selectivity. Cell Signal 26:1943–1949

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick LE, Hill SJ (2016) The use of fluorescence correlation spectroscopy to characterize the molecular mobility of fluorescently labelled G protein-coupled receptors. Biochem Soc Trans 44:624–629

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick LE, Briddon SJ, Holliday ND (2012) Fluorescence correlation spectroscopy, combined with bimolecular fluorescence complementation, reveals the effects of beta-arrestin complexes and endocytic targeting on the membrane mobility of neuropeptide Y receptors. Biochim Biophys Acta 1823:1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott C, Maguire JJ, Moratalla R, Bowery NG (1993) Regional effects of pertussis toxin in vivo and in vitro on GABA-B receptor-binding in rat brain. Neuroscience 52:73–81

    Article  CAS  PubMed  Google Scholar 

  • Ladepeche L, Dupuis JP, Groc L (2014) Surface trafficking of NMDA receptors: gathering from a partner to another. Semin Cell Dev Biol 27:3–13

    Article  CAS  PubMed  Google Scholar 

  • Levitt ES, Clark MJ, Jenkins PM, Martens JR, Traynor JR (2009) Differential effect of membrane cholesterol removal on mu- and delta-opioid receptors a parallel comparison of acute and chronic signaling to adenylyl cyclase. J Biol Chem 284:22108–22122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Wang Q, Jiang Y, Xiao Z, Fang X, Chen Y-G (2007) Lateral diffusion of TGF-beta type I receptor studied by single-molecule imaging. Biochem Biophys Res Commun 356:67–71

    Article  CAS  PubMed  Google Scholar 

  • McPherson J, Rivero G, Baptist M, Llorente J, Al-Sabah S, Krasel C, Dewey WL, Bailey CP, Rosethorne EM, Charlton SJ, Henderson G, Kelly E (2010) Mu-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol Pharmacol 78:756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari P, Vezzi V, Sbraccia M, Gro C, Riitano D, Ambrosio C, Casella I, Costa T (2010) Morphine-like opiates selectively antagonize receptor-arrestin interactions. J Biol Chem 285:12522–12535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oates J, Faust B, Attrill H, Harding P, Orwick M, Watts A (2012) The role of cholesterol on the activity and stability of neurotensin receptor 1. Biochim Biophys Acta 1818:2228–2233

    Article  CAS  PubMed  Google Scholar 

  • Orr G, Hu DH, Ozcelik S, Opresko LK, Wiley HS, Colson SD (2005) Cholesterol dictates the freedom of EGF receptors and HER2 in the plane of the membrane. Biophys J 89:1362–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostasov P, Bourova L, Hejnova L, Novotny J, Svoboda P (2007) Disruption of the plasma membrane integrity by cholesterol depletion impairs effectiveness of TRH receptor-mediated signal transduction via G(q)/G(11)alpha proteinse. J Recept Signal Transduction 27:335–352

    Article  CAS  Google Scholar 

  • Owen DM, Williamson D, Rentero C, Gaus K (2009) Quantitative microscopy: protein dynamics and membrane organisation. Traffic 10:962–971

    Article  CAS  PubMed  Google Scholar 

  • Paila YD, Chattopadhyay A (2010) Membrane cholesterol in the function and organization of G-protein coupled receptors. Subcell Biochem 51:439–466

    Article  CAS  PubMed  Google Scholar 

  • Paila YD, Jindal E, Goswami SK, Chattopadhyay A (2011) Cholesterol depletion enhances adrenergic signaling in cardiac myocytes. Biochim Biophys Acta 1808:461–465

    Article  CAS  PubMed  Google Scholar 

  • Pasternak GW, Pan Y-X (2013) Mu opioids and their receptors: evolution of a concept. Pharmacol Rev 65:1257–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramanik A, Olsson M, Langel U, Bartfai T, Rigler R (2001) Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells. Biochemistry 40:10839–10845

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Chattopadhyay A (2007) Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells. Biochim Biophys Acta 1768:655–668

    Article  CAS  PubMed  Google Scholar 

  • Pucadyil TJ, Kalipatnapu S, Hirikumar KG, Rangaraj N, Karnik SS, Chattopadhyay A (2004) G-protein-dependant cell surface dynamics of the human serotonin(1A) receptor tagged to yellow fluorescent protein. Biochemistry 43:15852–15862

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Wang Y, Law P-Y, Chen H-Z, Loh HH (2011) Cholesterol regulates mu-opioid receptor-induced beta-arrestin 2 translocation to membrane lipid rafts. Mol Pharmacol 80:210–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapsomaniki MA, Kotsantis P, Symeonidou I-E, Giakoumakis N-N, Taraviras S, Lygerou Z (2012) easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics 28:1800–1801

    Article  CAS  PubMed  Google Scholar 

  • Reiter E, Ahn S, Shukla AK, Lefkowitz RJ (2012) Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 52:179–197

    Article  CAS  PubMed  Google Scholar 

  • Rivero G, Llorente J, McPherson J, Cooke A, Mundell SJ, McArdle CA, Rosethorne EM, Charlton SJ, Krasel C, Bailey CP, Henderson G, Kelly E (2012) Endomorphin-2: a biased agonist at the mu-opioid receptor. Mol Pharmacol 82:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauliere A, Gaibelet G, Millot C, Mazeres S, Lopez A, Salome L (2006) Diffusion of the mu opioid receptor at the surface of human neuroblastoma SH-SY5Y cells is restricted to permeable domains. FEBS Lett 580:5227–5231

    Article  CAS  PubMed  Google Scholar 

  • Sauliere-Nzeh AN, Millot C, Corbani M, Mazeres S, Lopez A, Salome L (2010) Agonist-selective dynamic compartmentalization of human mu opioid receptor as revealed by resolutive FRAP analysis. J Biol Chem 285:14514–14520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena R, Chattopadhyay A (2011) Membrane organization and dynamics of the serotonin(1A) receptor in live cells. J Neurochem 116:726–733

    Article  CAS  PubMed  Google Scholar 

  • Snaar-Jagalska BE, Cambi A, Schmidt T, de Keijzer S (2013) Single-molecule imaging technique to study the dynamic regulation of GPCR function at the plasma membrane. Methods Enzymol 521:47–67

    Article  CAS  PubMed  Google Scholar 

  • Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41:95–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson GL, Lane JR, Coudrat T, Sexton PM, Christopoulos A, Canals M (2015) Biased agonism of endogenous opioid peptides at the mu-opioid receptor. Mol Pharmacol 88:335–346

    Article  CAS  PubMed  Google Scholar 

  • Veya L, Piguet J, Vogel H (2015) Single molecule imaging deciphers the relation between mobility and signaling of a prototypical G protein-coupled receptor in living cells. J Biol Chem 290:27723–27735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vigano D, Rubino T, Di Chiara G, Ascari I, Massi P, Parolaro D (2003) Mu-opioid receptor signaling in morphine sensitization. Neuroscience 117:921–929

    Article  CAS  PubMed  Google Scholar 

  • Vukojevic V, Ming Y, D’Addario C, Hansen M, Langel U, Schulz R, Johansson B, Rigler R, Terenius L (2008) Mu-opioid receptor activation in live cells. FASEB J 22:3537–3548

    Article  CAS  PubMed  Google Scholar 

  • Walker JM (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol Biol 32:5–8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Charles University Grant Agency (798213) and cofinanced by the European Regional Development Fund and the state budget of the Czech Republic (CZ.1.05/4.1.00/16.0347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Novotny.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melkes, B., Hejnova, L. & Novotny, J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn-Schmiedeberg's Arch Pharmacol 389, 1289–1300 (2016). https://doi.org/10.1007/s00210-016-1293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1293-8

Keywords

Navigation