Skip to main content

Advertisement

Log in

Vitexin protects against cardiac hypertrophy via inhibiting calcineurin and CaMKII signaling pathways

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Vitexin is a flavone glycoside isolated from the leaf of Crataeguspinnatifida Bunge, the utility of which has been demonstrated in several cardiovascular diseases. However, its role in cardiac hypertrophy remains unclear. In the present study, we aimed to determine whether vitexin prevents cardiac hypertrophy induced by isoproterenol (ISO) in cultured neonatal rat ventricular myocytes in vitro and pressure overload-induced cardiac hypertrophy in mice in vivo. The results revealed that vitexin (10, 30, and 100 μM) dose-dependently attenuated cardiac hypertrophy induced by ISO in vitro. Furthermore, vitexin (3, 10, and 30 mg kg−1) prevented cardiac hypertrophy induced by transverse aortic constriction as assessed by heart weight/body weight, left ventricular weight/body weight and lung weight/body weight ratios, cardiomyocyte cross-sectional area, echocardiographic parameters, and gene expression of hypertrophic markers. Further investigation demonstrated that vitexin inhibited the increment of the resting intracellular free calcium induced by ISO. Vitexin also inhibited the expression of calcium downstream effectors calcineurin-NFATc3 and phosphorylated calmodulin kinase II (CaMKII) both in vitro and in vivo. Taken together, our results indicate that vitexin has the potential to protect against cardiac hypertrophy through Ca2+-mediated calcineurin-NFATc3 and CaMKII signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson ME (2005) Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 106:39–55

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME, Brown JH, Bers DM (2011a) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME, Brown JH, Bers DM (2011b) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473

    Article  PubMed  CAS  Google Scholar 

  • Asakawa M, Komuro I (2001) Cardiac hypertrophy and calcium signaling. Clin Calcium 11:424–428

    PubMed  CAS  Google Scholar 

  • Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106(7):2342–7

    Article  PubMed  CAS  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128:191–227

    Article  PubMed  CAS  Google Scholar 

  • Bueno OF, Wilkins BJ, Tymitz KM, Glascock BJ, Kimball TF, Lorenz JN, Molkentin JD (2002) Impaired cardiac hypertrophic response in calcineurin Abeta -deficient mice. Proc Natl Acad Sci U S A 99:4586–4591

    Article  PubMed  CAS  Google Scholar 

  • Cave A, Grieve D, Johar S, Zhang M, Shah AM (2005) NADPH oxidasederived reactive oxygen species in cardiac pathophysiology. Philos Trans R Soc Lond, B, Biol Sci 360:2327–2334

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Xu L, Lai D, Guilbert A, Lim HJ, Keskanokwong T, Wang Y (2012) CaMKII inhibition in heart failure, beneficial, harmful, or both. Am J Physiol Heart Circ Physiol 302:H1454–1465

    Article  PubMed  CAS  Google Scholar 

  • Dong LY, Chen ZW, Guo Y, Cheng XP, Shao X (2008) Mechanisms of vitexin preconditioning effects on cultured neonatal rat cardiomyocytes with anoxia and reoxygenation. Am J Chin Med 36:385–397

    Article  PubMed  CAS  Google Scholar 

  • Dong L, Fan Y, Shao X, Chen Z (2011) Vitexin protects against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts by attenuating inflammatory response and apoptosis. Food Chem Toxicol 49:3211–3216

    Article  PubMed  CAS  Google Scholar 

  • Eom GH, Cho YK, Ko JH, Shin S, Choe N, Kim Y, Joung H, Kim HS, Nam KI, Kee HJ, Kook H (2011) Casein kinase-2alpha1 induces hypertrophic response by phosphorylation of histone deacetylase 2 S394 and its activation in the heart. Circulation 123:2392–2403

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Salomone S, Godfraind T (1996) Action of the calcium channel blocker lacidipine on cardiac hypertrophy and endothelin-1 gene expression in stroke-prone hypertensive rats. Br J Pharmacol 118:659–664

    Article  PubMed  CAS  Google Scholar 

  • Gunther S, Baba HA, Hauptmann S, Holzhausen HJ, Grossmann C, Punkt K, Kusche T, Jones LR, Gergs U, Neumann J (2010) Losartan reduces mortality in a genetic model of heart failure. Naunyn Schmiedebergs Arch Pharmacol 382:265–278

    Article  PubMed  Google Scholar 

  • Gupta S, Das B, Sen S (2007) Cardiac hypertrophy: mechanisms and therapeutic opportunities. Antioxid Redox Signal 9:623–652

    Article  PubMed  CAS  Google Scholar 

  • Han JJ, Hao J, Kim CH, Hong JS, Ahn HY, Lee YS (2009) Quercetin prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Med Sci 71:737–743

    Article  PubMed  CAS  Google Scholar 

  • Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    Article  PubMed  CAS  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Moon JS, Lee KS, Park SY, Cheong J, Kang HS, Lee HY, Kim HD (2004) Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-kappaB activity in LPS-stimulated mouse peritoneal macrophages and RAW 264.7 cells. Biochem Biophys Res Commun 314:695–703

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Lee BC, Kim JH, Sim GS, Lee DH, Lee KE, Yun YP, Pyo HB (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res 28(2):195–202

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Ishikura F, Beppu S, Asakura M, Takashima S, Asanuma H, Sanada S, Kim J, Ogita H, Kuzuya T, Node K, Kitakaze M, Hori M (2002) Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol Heart Circ Physiol 282:H1703–1708

    PubMed  CAS  Google Scholar 

  • Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD (2000) Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101:2431–2437

    Article  PubMed  CAS  Google Scholar 

  • Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest s119(5):1230–40

    Article  Google Scholar 

  • MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, Jaleel N, Berretta R, Chen X, Brown JH, Sabri A-K, Molkentin JD, Houser SR (2009) CaMKII negatively regulates calcineurin—NFAT signaling in cardiac myocytes. Circ Res 105:316–325

    Article  PubMed  CAS  Google Scholar 

  • Martino E, Collina S, Rossi D, Bazzoni D, Gaggeri R, Bracco F, Azzolina O (2008) Influence of the extraction mode on the yield of hyperoside, vitexin and vitexin-2″-O-rhamnoside from Crataegus monogyna Jacq. (hawthorn). Phytochem Anal 19:534–540

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228

    Article  PubMed  CAS  Google Scholar 

  • Montero M, Lobaton CD, Gutierrez-Fernandez S, Moreno A, Alvarez J (2004) Calcineurin-independent inhibition of mitochondrial Ca2+ uptake by cyclosporin A. Br J Pharmacol 141:263–268

    Article  PubMed  CAS  Google Scholar 

  • Obata K, Nagata K, Iwase M, Odashima M, Nagasaka T, Izawa H, Murohara T, Yamada Y, Yokota M (2005) Overexpression of calmodulin induces cardiac hypertrophy by a calcineurin-dependent pathway. Biochem Biophys Res Commun 338:1299–1305

    Article  PubMed  CAS  Google Scholar 

  • Oka T, Komuro I (2008) Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J 72(A):A13–16

    Article  PubMed  Google Scholar 

  • Pan ZW, Zhang Y, Mei DH, Zhang R, Wang JH, Zhang XY, Xu CQ, Lu YJ, Yang BF (2010) Scutellarin exerts its anti-hypertrophic effects via suppressing the Ca2+-mediated calcineurin and CaMKII signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 381(2):137–45

    Google Scholar 

  • Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61:269–280

    Article  PubMed  CAS  Google Scholar 

  • Rosca MG, Tandler B, Hoppel CL (2012) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol

  • Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid. Redox Signal 5:731–740

    Article  CAS  Google Scholar 

  • Saito T, Fukuzawa J, Osaki J, Sakuragi H, Yao N, Haneda T, Fujino T, Wakamiya N, Kikuchi K, Hasebe N (2003) Roles of calcineurin and calcium/calmodulin-dependent protein kinase II in pressure overload-induced cardiac hypertrophy. J Mol Cell Cardiol 35:1153–1160

    Article  PubMed  CAS  Google Scholar 

  • Selvetella G, Lembo G (2005) Mechanisms of cardiac hypertrophy. Heart Fail Clin 1:263–273

    Article  PubMed  Google Scholar 

  • Sun B, Huo R, Sheng Y, Li Y, Xie X, Chen C, Liu H-B, Li N, Li C-B, Guo W-T, Zhu J-X, Yang B-F, Dong D-L (2012) Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension 61(2):352–60

    Article  PubMed  Google Scholar 

  • Vicencio JM, Estrada M, Galvis D, Bravo R, Contreras AE, Rotter D, Szabadkai G, Hill JA, Rothermel BA, Jaimovich E, Lavandero S (2011) Anabolic androgenic steroids and intracellular calcium signaling: a mini review on mechanisms and physiological implications. Mini Rev Med Chem 11:390–398

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Han HM, Pan ZW, Hang PZ, Sun LH, Jiang YN, Song HX, Du ZM, Liu Y (2012) Choline inhibits angiotensin II-induced cardiac hypertrophy by intracellular calcium signal and p38 MAPK pathway. Naunyn Schmiedebergs Arch Pharmacol 385:823–831

    Article  PubMed  CAS  Google Scholar 

  • Weiss CS, Hagenmuller M, Pichler M, Munz S, Ochs M, Buss SJ, Bekeredjian R, Katus HA, Hardt SE (2010) Activation of PPARgamma by pioglitazone does not attenuate left ventricular hypertrophy following aortic banding in rats. Naunyn Schmiedebergs Arch Pharmacol 381:285–295

    Article  PubMed  CAS  Google Scholar 

  • Wilkins BJ, Molkentin JD (2004) Calcium–calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 322:1178–1191

    Article  PubMed  CAS  Google Scholar 

  • Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Molkentin JD (2002) Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol 22(21):7603–7613

    Article  PubMed  CAS  Google Scholar 

  • Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, Jones F, Kimball TR, Molkentin JD (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res 94:110–118

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Gu YM (2007) Effect of EGb and quercetin on culture neonatal rat cardiomyocytes hypertrophy and mechanism. Zhongguo Ying Yong Sheng Li Xue Za Zhi 23:138–142

    PubMed  CAS  Google Scholar 

  • Yang SH, Liao PH, Pan YF, Chen SL, Chou SS, Chou MY (2012) The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother Res doi:10.1002/ptr.4841

    Google Scholar 

  • Zhang R, Khoo MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, Madu EC, Shah AN, Vishnivetskaya TA, Atkinson JB, Gurevich VV, Salama G, Lederer WJ, Colbran RJ, Anderson ME (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11(4):409–17

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S, Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, Komuro I (2001) Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 104:97–101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China [81072639].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-min Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Cc., Xu, Yq., Wu, Jc. et al. Vitexin protects against cardiac hypertrophy via inhibiting calcineurin and CaMKII signaling pathways. Naunyn-Schmiedeberg's Arch Pharmacol 386, 747–755 (2013). https://doi.org/10.1007/s00210-013-0873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-013-0873-0

Keywords

Navigation