Skip to main content

Advertisement

Log in

i2 signaling: friend or foe in cardiac injury and heart failure?

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Receptors coupled to G proteins have many effects on the heart. Enhanced signaling by Gαs and Gαq leads to cardiac injury and heart failure, while Gαi2 signaling in cardiac myocytes can protect against ischemic injury and β-adrenergic-induced heart failure. We asked whether enhanced Gαi2 signaling in mice could protect against heart failure using a point mutation in Gαi2 (G184S), which prevents negative regulation by regulators of G protein signaling. Contrary to our expectation, it worsened effects of a genetic dilated cardiomyopathy (DCM) and catecholamine-induced cardiac injury. Gα G184S/+i2 /DCM double heterozygote mice (TG9+ G184S/+i2 ) had substantially decreased survival compared to DCM animals. Furthermore, heart weight/body weight ratios (HW/BW) were significantly greater in TG9+ G184S/+i2 mice as was expression of natriuretic peptide genes. Catecholamine injury in Gα G184S/G184Si2 mutant mice produced markedly increased isoproterenol-induced fibrosis and collagen III gene expression vs WT mice. Cardiac fibroblasts from Gα G184S/G184Si2 mice also showed a serum-dependent increase in proliferation and ERK phosphorylation, which were blocked by pertussis toxin and a mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Gαi2 signaling in cardiac myocytes protects against ischemic injury but enhancing Gαi2 signaling overall may have detrimental effects in heart failure, perhaps through actions on cardiac fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baudino TA, Carver W, Giles W, Borg TK (2006) Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol 291:H1015–H1026

    Article  PubMed  CAS  Google Scholar 

  • Blazer LL, Zhang H, Casey EM, Husbands SM, Neubig RR (2011) A nanomolar-potency small molecule inhibitor of regulator of G protein signaling (RGS) proteins. Biochemistry 50:3181–3192

    Article  PubMed  CAS  Google Scholar 

  • Buerger A, Rozhitskaya O, Sherwood MC, Dorfman AL, Bisping E, Abel ED, Pu WT, Izumo S, Jay PY (2006) Dilated cardiomyopathy resulting from high-level myocardial expression of Cre-recombinase. J Card Fail 12:392–398

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Yang XY, Wang ND, Ding C, Yang YJ, You ZJ, Su Q, Chen JH (2003) Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest 63:497–503

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Han Y, Zhu W, Ma R, Han B, Cong X, Hu S, Chen X (2006) Specific receptor subtype mediation of LPA-induced dual effects in cardiac fibroblasts. FEBS Lett 580:4737–4745

    Article  PubMed  CAS  Google Scholar 

  • Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT (2000) The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179

    PubMed  CAS  Google Scholar 

  • Dahab GM, Kheriza MM, El-Beltagi HM, Fouda AM, El-Din OA (2004) Digital quantification of fibrosis in liver biopsy sections: description of a new method by Photoshop software. J Gastroenterol Hepatol 19:78–85

    Article  PubMed  Google Scholar 

  • DeGeorge BR Jr, Gao E, Boucher M, Vinge LE, Martini JS, Raake PW, Chuprun JK, Harris DM, Kim GW, Soltys S, Eckhart AD, Koch WJ (2008) Targeted inhibition of cardiomyocyte Gi signaling enhances susceptibility to apoptotic cell death in response to ischemic stress. Circulation 117:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Dzau VJ (1992) Autocrine and paracrine mechanisms in the pathophysiology of heart failure. Am J Cardiol 70:4C–11C

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 96:7059–7064

    Article  PubMed  CAS  Google Scholar 

  • Epperson SA, Brunton LL, Ramirez-Sanchez I, Villarreal F (2009) Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 296:C1171–C1177

    Article  PubMed  CAS  Google Scholar 

  • Fan H, Zingarelli B, Peck OM, Teti G, Tempel GE, Halushka PV, Spicher K, Boulay G, Birnbaumer L, Cook JA (2005) Lipopolysaccharide- and gram-positive bacteria-induced cellular inflammatory responses: role of heterotrimeric Galpha(i) proteins. Am J Physiol Cell Physiol 289:C293–C301

    Article  PubMed  CAS  Google Scholar 

  • Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 82:189–197

    Article  PubMed  CAS  Google Scholar 

  • Foerster K, Groner F, Matthes J, Koch WJ, Birnbaumer L, Herzig S (2003) Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through beta 2-adrenoceptors. Proc Natl Acad Sci U S A 100:14475–14480

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Zhong H, Nanamori M, Mortensen RM, Huang X, Lan K, Neubig RR (2004) RGS-insensitive G-protein mutations to study the role of endogenous RGS proteins. Methods Enzymol 389:229–243

    Article  PubMed  CAS  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  • Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    Article  PubMed  CAS  Google Scholar 

  • Hruz PW, Yan Q, Struthers H, Jay PY (2008) HIV protease inhibitors that block GLUT4 precipitate acute, decompensated heart failure in a mouse model of dilated cardiomyopathy. FASEB J 22:2161–2167

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Fu Y, Charbeneau RA, Saunders TL, Taylor DK, Hankenson KD, Russell MW, D’Alecy LG, Neubig RR (2006) Pleiotropic phenotype of a genomic knock-in of an RGS-insensitive G184S Gnai2 allele. Mol Cell Biol 26:6870–6879

    Article  PubMed  CAS  Google Scholar 

  • Lan KL, Zhong H, Nanamori M, Neubig RR (2000) Rapid kinetics of regulator of G-protein signaling (RGS)-mediated Galphai and Galphao deactivation. Galpha specificity of RGS4 AND RGS7. J Biol Chem 275:33497–33503

    Article  PubMed  CAS  Google Scholar 

  • Lechat P, Packer M, Chalon S, Cucherat M, Arab T, Boissel JP (1998) Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. Circulation 98:1184–1191

    PubMed  CAS  Google Scholar 

  • Liu X, Sun SQ, Hassid A, Ostrom RS (2006) cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol 70:1992–2003

    Article  PubMed  CAS  Google Scholar 

  • MacLellan WR (2000) Advances in the molecular mechanisms of heart failure. Curr Opin Cardiol 15:128–135

    Article  PubMed  CAS  Google Scholar 

  • McEwen DP, Gee KR, Kang HC, Neubig RR (2002) Fluorescence approaches to study G protein mechanisms. Methods Enzymol 344:403–420

    Article  PubMed  CAS  Google Scholar 

  • Neubig RR, Siderovski DP (2002) Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 1:187–197

    Article  PubMed  CAS  Google Scholar 

  • O’Connell TD, Rodrigo MC, Simpson PC (2007) Isolation and culture of adult mouse cardiac myocytes. Meth Mol Biol 357:271–296

    Google Scholar 

  • Ozaki M, Kawashima S, Yamashita T, Hirase T, Ohashi Y, Inoue N, Hirata K, Yokoyama M (2002) Overexpression of endothelial nitric oxide synthase attenuates cardiac hypertrophy induced by chronic isoproterenol infusion. Circ J 66:851–856

    Article  PubMed  CAS  Google Scholar 

  • Pero RS, Borchers MT, Spicher K, Ochkur SI, Sikora L, Rao SP, Abdala-Valencia H, O’Neill KR, Shen H, McGarry MP, Lee NA, Cook-Mills JM, Sriramarao P, Simon MI, Birnbaumer L, Lee JJ (2007) Galphai2-mediated signaling events in the endothelium are involved in controlling leukocyte extravasation. Proc Natl Acad Sci U S A 104:4371–4376

    Article  PubMed  CAS  Google Scholar 

  • Riddle EL, Schwartzman RA, Bond M, Insel PA (2005) Multi-tasking RGS proteins in the heart: the next therapeutic target? Circ Res 96:401–411

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Short J, Guo J, Steinberg SF (2002) Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 91:532–539

    Article  PubMed  CAS  Google Scholar 

  • Schnabel P, Bohm M (1996) Heterotrimeric G proteins in heart disease. Cell Signal 8:413–423

    Article  PubMed  CAS  Google Scholar 

  • Schoenfeld JR, Vasser M, Jhurani P, Ng P, Hunter JJ, Ross J Jr, Chien KR, Lowe DG (1998) Distinct molecular phenotypes in murine cardiac muscle development, growth, and hypertrophy. J Mol Cell Cardiol 30:2269–2280

    Article  PubMed  CAS  Google Scholar 

  • Tsygankova OM, Peng M, Maloney JA, Hopkins N, Williamson JR (1998) Angiotensin II induces diverse signal transduction pathways via both Gq and Gi proteins in liver epithelial cells. J Cell Biochem 69:63–71

    Article  PubMed  CAS  Google Scholar 

  • Vyas AK, Yang KC, Woo D, Tzekov A, Kovacs A, Jay PY, Hruz PW (2011) Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One 6:e17178

    Article  PubMed  CAS  Google Scholar 

  • Waterson RE, Thompson CG, Mabe NW, Kaur K, Talbot JN, Neubig RR, Rorabaugh BR (2011) G{alpha}i2-mediated protection from ischaemic injury is modulated by endogenous RGS proteins in the mouse heart. Cardiovasc Res 91:45–52

    Google Scholar 

  • Zarbock A, Deem TL, Burcin TL, Ley K (2007) Galphai2 is required for chemokine-induced neutrophil arrest. Blood 110:3773–3779

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Neubig RR (2001) Regulator of G protein signaling proteins: novel multifunctional drug targets. J Pharmacol Exp Ther 297:837–845

    PubMed  CAS  Google Scholar 

  • Zou Y, Komuro I, Yamazaki T, Kudoh S, Aikawa R, Zhu W, Shiojima I, Hiroi Y, Tobe K, Kadowaki T, Yazaki Y (1998) Cell type-specific angiotensin II-evoked signal transduction pathways: critical roles of Gbetagamma subunit, Src family, and Ras in cardiac fibroblasts. Circ Res 82:337–345

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study supported by National Institutes of Health grant R01-GM39561 (R.R.N.) and the University of Michigan Comprehensive Cancer Center (National Institutes of Health grant P30-CA46592). PYJ is a Scholar of the Child Health Research Center of Excellence in Developmental Biology at Washington University School of Medicine (National Institutes of Health K12-HD001487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Neubig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, K., Parra, S., Chen, R. et al.i2 signaling: friend or foe in cardiac injury and heart failure?. Naunyn-Schmiedeberg's Arch Pharmacol 385, 443–453 (2012). https://doi.org/10.1007/s00210-011-0705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0705-z

Keywords

Navigation