Skip to main content

Advertisement

Log in

Peroxisome proliferator activated receptor γ and oxidized docosahexaenoic acids as new class of ligand

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

PPARγ regulates the expression of numerous genes. In addition to their anti-diabetic activity, PPARγ agonists have been reported to have beneficial effects for cancer, inflammation including inflammatory bowel disease, atherosclerosis and brain inflammation, as well as bone turnover. To investigate a potential new class of ligands for PPARγ, we designed with reference to the crystal structure of the ligand-binding domain of PPARγ oxidized docosahexaenoic acid (DHA) derivatives, which have a hydrophilic substituent at the C(4)-position and are putative metabolites of DHA. We synthesized 14 compounds and evaluated their activities in vitro. We found that these DHA derivatives show PPARγ transactivation higher than, or comparable to, that of pioglitazone, which is a thiazolidinedione derivative used as an antidiabetic agent. Furthermore, one of them showed anti-diabetic activity in animal models. In this paper, we review the potential of PPARγ as a drug target and oxidized DHA as a new class of ligand for PPARγ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Babaev VR, Yancey PG, Ryzhov SV, Kon V, Breyer MD, Magnuson MA, Fazio S, Linton MF (2005) Conditional knockout of macrophage PPARγ increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 25:1647–1653

    Article  PubMed  CAS  Google Scholar 

  • Baylis C, Atzpodien EA, Freshour G, Engels K (2003) Peroxisome proliferator-activated receptorγ agonist provides superior renal protection versus angiotensin-converting enzyme inhibition in a rat model of type 2 diabetes with obesity. J Pharmacol Exp Ther 307:854–860

    Article  PubMed  CAS  Google Scholar 

  • Benkirane K, Amiri F, Diep QN, El Mabrouk M, Schiffrin EL (2006) PPAR-gamma inhibits ANG II-induced cell growth via SHIP2 and 4E-BP1. Am J Physiol Heart Circ Physiol 290:H390–H397

    Article  PubMed  CAS  Google Scholar 

  • Berk BC, Haendeler J, Sottile J (2000) Angiotensin II, atherosclerosis, and aortic aneurysms. J Clin Invest 105:1525–1526

    Article  PubMed  CAS  Google Scholar 

  • Bernardo A, Ajmone-Cat MA, Gasparini L, Ongini E, Minghetti L (2005) Nuclear receptor peroxisome proliferator-activated receptorγ is activated in rat microglial cells by the anti-inflammatory drug HCT1026, a derivative of flurbiprofen. J Neurochem 92:895–903

    Article  PubMed  CAS  Google Scholar 

  • Bishop-Bailey D, Hla T (1999) Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Δ2, 14-prostaglandin J2. J Biol Chem 274:17042–17048

    Article  PubMed  CAS  Google Scholar 

  • Calkin AC, Forbes JM, Smith CM, Lassila M, Cooper ME, Jandeleit-Dahm KA, Allen TJ (2005) Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 25:1903–1909

    Article  PubMed  CAS  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567

    PubMed  CAS  Google Scholar 

  • Cronet P, Petersen JF, Folmer R, Blomberg N, Sjoblom K, Karlsson U, Lindstedt EL, Bamberg K (2001) Structure of the PPARα and -γ ligand binding domain in complex with AZ242; ligand selectivity and agonist activation in the PPAR family. Structure 9:699–706

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NS, Di Paola R, Genovese T, Chatterjee PK, Di Rosa M, Caputi AP, Thiemermann C (2003) Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptorγ (PPARγ), reduce ischaemia/reperfusion injury of the gut. Br J Pharmacol 140:366–376

    Article  PubMed  CAS  Google Scholar 

  • Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by the peroxisome proliferator-activated receptorγ ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96:3951–3956

    Article  PubMed  CAS  Google Scholar 

  • Diau GY, Hsieh AT, Sarkadi-Nagy EA, Wijendran V, Nathanielsz PW, Brenna JT (2005) The influence of long chain polyunsaturate supplementation on docosahexaenoic acid and arachidonic acid in baboon neonate central nervous system. BMC Med 3:11

    Article  PubMed  CAS  Google Scholar 

  • Drori S, Girnun GD, Tou L, Szwaya JD, Mueller E, Xia K, Shivdasani RA, Spiegelman BM (2005) Hic-5 regulates an epithelial program mediated by PPARγ. Genes Dev 19:362–375

    Article  PubMed  CAS  Google Scholar 

  • Dubuquoy L, Rousseaux C, Thuru X, Peyrin-Biroulet L, Romano O, Chavatte P, Chamaillard M, Desreumaux P (2006) PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut 55:1341–1349

    Article  PubMed  CAS  Google Scholar 

  • Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARγ gene. J Biol Chem 272:18779–18789

    Article  PubMed  CAS  Google Scholar 

  • Gampe RT Jr, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARγ/RXRγ crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555

    Article  PubMed  CAS  Google Scholar 

  • Giaginis C, Tsantili-Kakoulidou A, Theocharis S (2007) Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism. Fundam Clin Pharmacol 21:231–244

    Article  PubMed  CAS  Google Scholar 

  • Girnun GD, Naseri E, Vafai SB, Qu L, Szwaya JD, Bronson R, Alberta JA, Spiegelman BM (2007) Synergy between PPARγ ligands and platinum-based drugs in cancer. Cancer Cell 11:395–406

    Article  PubMed  CAS  Google Scholar 

  • Giulian D (1999) Microglia and the immune pathology of Alzheimer disease. Am J Hum Genet 65:13–18

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann N Y Acad Sci 991:214–228

    Article  PubMed  CAS  Google Scholar 

  • Itagaki S, McGeer PL, Akiyama H, Zhu S, Selkoe D (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24:173–182

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Murota I, Yoshikai K, Yamada S, Yamamoto K (2006) Synthesis of docosahexaenoic acid derivatives designed as novel PPARγ agonists and antidiabetic agents. Bioorg Med Chem 14:98–108

    Article  PubMed  CAS  Google Scholar 

  • Kintscher U, Lyon CJ, Law RE (2004) Angiotensin II, PPAR-gamma and atherosclerosis. Front Biosci 9:359–369

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM (1995) A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83:813–819

    Article  PubMed  CAS  Google Scholar 

  • Kulke MH, Demetri GD, Sharpless NE, Ryan DP, Shivdasani R, Clark JS, Spiegelman BM, Kim H, Mayer RJ, Fuchs CS (2002) A phase II study of troglitazone, an activator of the PPARg receptor, in patients with chemotherapy-resistant metastatic colorectal cancer. Cancer J 8:395–399

    Article  PubMed  Google Scholar 

  • Landreth GE, Heneka MT (2001) Anti-inflammatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol Aging 22:937–944

    Article  PubMed  CAS  Google Scholar 

  • Lyseng-Williamson KA (2007) Sitagliptin: a guide to its use in type 2 diabetes. Drugs 67:587–597

    Article  PubMed  CAS  Google Scholar 

  • Mudaliar S, Henry RR (2001) New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 52:239–257

    Article  PubMed  CAS  Google Scholar 

  • Murata T, He S, Hangai M, Ishibashi T, Xi XP, Kim S, Hsueh WA, Ryan SJ, Law RE, Hinton DR (2000) Peroxisome proliferator-activated receptorγ ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci 41:2309–2317

    PubMed  CAS  Google Scholar 

  • Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    Article  PubMed  CAS  Google Scholar 

  • Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptorγ. Nature 395:137–143

    Article  PubMed  CAS  Google Scholar 

  • Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L, Hahnfeldt P, Folkman J, Kaipainen A (2002) PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110:923–932

    PubMed  CAS  Google Scholar 

  • Patel CB, De Lemos JA, Wyne KL, McGuire DK (2006) Thiazolidinediones and risk for atherosclerosis: pleiotropic effects of PPARγ agonism. Diab Vasc Dis Res 3:65–71

    Article  PubMed  Google Scholar 

  • Rousseaux C, Lefebvre B, Dubuquoy L, Lefebvre P, Romano O, Auwerx J, Metzger D, Wahli W, Desvergne B, Naccari GC, Chavatte P, Farce A, Bulois P, Cortot A, Colombel JF, Desreumaux P (2005) Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptorγ. J Exp Med 201:1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Hidalgo M, Martin AR, Villegas I, Alarcon De La Lastra C (2005) Rosiglitazone, an agonist of peroxisome proliferator-activated receptorγ, reduces chronic colonic inflammation in rats. Biochem Pharmacol 69:1733–1744

    Article  PubMed  CAS  Google Scholar 

  • Sassa Y, Hata Y, Aiello LP, Taniguchi Y, Kohno K, Ishibashi T (2004) Bifunctional properties of peroxisome proliferator-activated receptorγ1 in KDR gene regulation mediated via interaction with both Sp1 and Sp3. Diabetes 53:1222–1229

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, Strotmeyer ES, Resnick HE, Carbone L, Beamer BA, Park SW, Lane NE, Harris TB, Cummings SR (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354

    Article  PubMed  CAS  Google Scholar 

  • Staels B (2005) PPARγ and atherosclerosis. Curr Med Res Opin 21(Suppl 1):S13–S20

    Article  PubMed  CAS  Google Scholar 

  • Sugawara K, Olson TS, Moskaluk CA, Stevens BK, Hoang S, Kozaiwa K, Cominelli F, Ley KF, McDuffie M (2005) Linkage to peroxisome proliferator-activated receptorγ in SAMP1/YitFc mice and in human Crohn’s disease. Gastroenterology 128:351–360

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Akechi T, Kobayashi M, Taniguchi K, Goto K, Sasaki S, Tsugane S, Nishiwaki Y, Miyaoka H, Uchitomi Y (2004) Daily omega-3 fatty acid intake and depression in Japanese patients with newly diagnosed lung cancer. Br J Cancer 90:787–793

    Article  PubMed  CAS  Google Scholar 

  • Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM (1997) Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptorγ and the retinoid X receptor. Proc Natl Acad Sci U S A 94:237–241

    Article  PubMed  CAS  Google Scholar 

  • Vanden Heuvel JP (2007) The PPAR resource page. Biochim Biophys Acta 1771:1108–1112

    PubMed  CAS  Google Scholar 

  • Wang T, Xu J, Yu X, Yang R, Han ZC (2006) Peroxisome proliferator-activated receptorγ in malignant diseases. Crit Rev Oncol Hematol 58:1–14

    Article  PubMed  Google Scholar 

  • Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptorγ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    Article  PubMed  CAS  Google Scholar 

  • Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT Jr, McKee DD, Moore JT, Willson TM (2001) Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci U S A 98:13919–13924

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Sun WY, Ohta M, Hamada K, DeLuca HF, Yamada S (1996) Conformationally restricted analogs of 1α,25-dihydroxyvitamin D3 and Its 20-epimer: compounds for study of the three-dimensional structure of vitamin d responsible for binding to the receptor. J Med Chem 39:2727–2737

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Itoh T, Abe D, Shimizu M, Kanda T, Koyama T, Nishikawa M, Tamai T, Ooizumi H, Yamada S (2005) Identification of putative metabolites of docosahexaenoic acid as potent PPARγ agonists and antidiabetic agents. Bioorg Med Chem Lett 15:517–522

    Article  PubMed  CAS  Google Scholar 

  • Yli-Jama P, Meyer HE, Ringstad J, Pedersen JI (2002) Serum free fatty acid pattern and risk of myocardial infarction: a case-control study. J Intern Med 251:19–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. John Schwabe of Department of Biochemistry, University of Leicester (Leicester, UK) for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, T., Yamamoto, K. Peroxisome proliferator activated receptor γ and oxidized docosahexaenoic acids as new class of ligand. Naunyn-Schmied Arch Pharmacol 377, 541–547 (2008). https://doi.org/10.1007/s00210-007-0251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0251-x

Keywords

Navigation