Skip to main content
Log in

Involvement of endothelial thromboxane A2 in the vasoconstrictor response induced by 15-E2t-isoprostane in isolated human umbilical vein

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate the contractile response of several E- and F-ring isoprostanes (IsoP) in human umbilical vein (HUV) and to investigate the role of the endothelium on the effect of 15-E2t-IsoP, the most potent vasoconstrictor isoprostane, in human vessels. HUV rings with or without endothelium were suspended in an organ bath for recording the isometric tension in response to different agonists. The inhibitors to be evaluated were applied 30 min before the addition of the agonist. All of the compounds tested produced concentration-dependent contractions when tested on HUV rings with endothelium. Although these compounds were equieffective, significant differences were observed in their potency, with U46619 being the most potent followed by 15-E2t-IsoP > 15-E1t-IsoP = 15-F2t-IsoP > 15-F1t-IsoP = 9-epi-15-F2t-IsoP in descending rank order of potency. 15-E2t-IsoP was the most potent of the isoprostanes evaluated and, therefore, the one employed in the present study. When intact endothelium HUV rings were used, 15-E2t-IsoP-induced contraction was unaffected by the endothelin-converting enzyme inhibitor, phosphoramidon (10 μM), suggesting that short-term endothelin-1 release is not involved in this response. However, the non-selective cyclooxygenase (COX) inhibitor, indomethacin (10 and 30 μM), and the COX-2 selective inhibitor, NS-398 (3, 10 and 30 μM) produced inhibitory effects on 15-E2t-IsoP-induced contraction of HUV rings with endothelium. These results indicate that COX-derived contractile prostanoids are involved in this effect. Furthermore, the apparent pK b values estimated for indomethacin (5.5) and NS-398 (5.4) suggest that the prostanoids involved are derived from the COX-2 isoenzyme pathway. On HUV rings with endothelium, the phospholipase A2 inhibitor, oleyloxyethyl phosphorylcholine (30 and 100 μM), induced an inhibitory effect on 15-E2t-IsoP-induced contraction, suggesting that the phospholipase A2 pathway is also involved in this effect. In addition, the thromboxane A2 synthase inhibitor furegrelate (10 and 30 μM) also inhibited 15-E2t-IsoP-induced contraction of HUV rings with endothelium, indicating that thromboxane A2 is one of the contractile prostanoids involved in this response. Endothelium denudation clearly diminished the vasoconstrictor potency of 15-E2t-IsoP, demonstrating that the endothelium releases a vasoconstrictor factor in response to 15-E2t-IsoP. The absence of an inhibitory effect at the highest concentration of furegrelate (30 μM) on 15-E2t-IsoP-induced contraction of HUV rings without endothelium suggested that endothelium is the source of thromboxane A2. We conclude that prostanoids derived from the COX-2 isoenzyme pathway participate in 15-E2t-IsoP-induced vasoconstriction of isolated HUV rings. Our results also indicate that endothelial thromboxane A2 is one of the prostanoids involved in this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altura BM, Malaviya D, Reich CF, Orkin LR (1972) Effects of vasoactive agents on isolated human umbilical arteries and veins. Am J Physiol 222:345–355

    PubMed  CAS  Google Scholar 

  • Belik J, Jankov RP, Pan J, Yi M, Pace-Asciak CR, Tanswell AK (2003) Effect of 8-isoprostaglandin F2alpha on the newborn rat pulmonary arterial muscle and endothelium. J Appl Physiol 95:1979–1985

    PubMed  CAS  Google Scholar 

  • Caughey GE, Cleland LG, Penglis PS, Gamble JR, James MJ (2001) Roles of cyclooxygenase (COX)-1 and COX-2 in prostanoid production by human endothelial cells: selective up-regulation of prostacyclin synthesis by COX-2. J Immunol 167:2831–2838

    PubMed  CAS  Google Scholar 

  • Cracowski JL, Stanke-Labesque F, Devillier P, Chavanon O, Hunt M, Souvignet C, Bessard G (2000) Human internal mammary artery contraction by isoprostaglandin f (2alpha) type-III [8-iso-prostaglandin F(2alpha)]. Eur J Pharmacol 397:161–168

    Article  PubMed  CAS  Google Scholar 

  • Cracowski JL, Devillier P, Durand T, Stanke-Labesque F, Bessard G (2001a) Vascular biology of the isoprostanes. J Vasc Res 38:93–103

    Article  PubMed  CAS  Google Scholar 

  • Cracowski JL, Devillier P, Chavanon O, Sietchiping-Nzepa FA, Stanke-Labesque F, Bessard G (2001b) Isoprostaglandin E2 type-III (8-iso-prostaglandin E2) evoked contractions in the human internal mammary artery. Life Sci 68:2405–2413

    Article  PubMed  CAS  Google Scholar 

  • Cracowski JL, Durand T, Bessard G (2002) Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol Sci 23:360–366

    Article  PubMed  CAS  Google Scholar 

  • Daray FM, Minvielle AI, Puppo S, Rothlin RP (2003) Pharmacological characterization of prostanoid receptors mediating vasoconstriction in human umbilical vein. Br J Pharmacol 139:1409–1416

    Article  PubMed  CAS  Google Scholar 

  • Daray FM, Minvielle AI, Puppo S, Rothlin RP (2004) Vasoconstrictor effects of 8-iso-prostaglandin E2 and 8-iso-prostaglandin F(2alpha) on human umbilical vein. Eur J Pharmacol 499:189–195

    Article  PubMed  CAS  Google Scholar 

  • DeLean A, Munson PJ, Rodbard D (1978) Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol 235:97–102

    Google Scholar 

  • Errasti AE, Rogines Velo MP, Torres RM, Sardi SP, Rothlin RP (1999) Characterization of α1-adrenoceptor subtypes mediating contraction in human umbilical vein. Br J Pharmacol 126:437–442

    Article  PubMed  CAS  Google Scholar 

  • Errasti AE, Rey-Ares V, Daray FM, Rogines-Velo MP, Sardi SP, Paz C, Podesta EJ, Rothlin RP (2001) Human umbilical vein: involvement of cyclooxygenase-2 pathway in bradykinin B1 receptor-sensitized responses. Naunyn Schmiedebergs Arch Pharmacol 364:149–156

    Article  PubMed  CAS  Google Scholar 

  • Frölich JC (1997) A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol Sci 18:30–34

    Article  PubMed  Google Scholar 

  • Fukunaga M, Yura T, Badr KF (1995) Stimulatory effect of 8-Epi-PGF2 alpha, an F2-isoprostane, on endothelin-1 release. J Cardiovasc Pharmacol 26:S51- S52

    PubMed  CAS  Google Scholar 

  • Futaki N, Takahashi S, Yokoyama M, Arai I, Higuchi S, Otomo S (1994) NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47:55–59

    Article  PubMed  CAS  Google Scholar 

  • Gao YJ, Lee RM (2001) Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production. Br J Pharmacol 134:1639–1646

    Article  PubMed  CAS  Google Scholar 

  • Gardan B, Cracowski JL, Sessa C, Hunt M, Stanke-Labesque F, Devillier P, Bessard G (2000) Vasoconstrictor effects of iso-prostaglandin F2alpha type-III (8-iso-prostaglandin F2alpha) on human saphenous veins. J Cardiovasc Pharmacol 35:729–734

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Gobeil F Jr, Peri K, Speranza G, Marrache AM, Lachapelle P, Roberts J 2nd, Varma DR, Chemtob S, Ellis EF (2000) Augmented vasoconstriction and thromboxane formation by 15-F(2t)-isoprostane (8isoprostaglandin F(2alpha)) in immature pig periventricular brain microvessels. Stroke 31:516–524

    PubMed  CAS  Google Scholar 

  • Janssen LJ, Premji M, Netherton S, Catalli A, Cox G, Keshavjee S, Crankshaw DJ (2000) Excitatory and inhibitory actions of isoprostanes in human and canine airway smooth muscle. J Pharmacol Exp Ther 295:506–511

    PubMed  CAS  Google Scholar 

  • Janssen LJ, Premji M, Netherton S, Coruzzi J, Lu-Chao H, Cox PG (2001) Vasoconstrictor actions of isoprostanes via tyrosine kinase and Rho kinase in human and canine pulmonary vascular smooth muscles. Br J Pharmacol 132:127–134

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson DH, Barnard EA, Hoyer D, Humphrey PP, Leff P, Shankley NP (1995) International union of pharmacology committee on receptor nomenclature and drug classification. IX. Recommendations on terms and symbols in quantitative pharmacology. Pharmacol Rev 47:255–266

    PubMed  CAS  Google Scholar 

  • Kaplan L, Weiss J, Elsbach P (1978) Low concentrations of indomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes. Proc Natl Acad Sci USA 75:2955–2958

    Article  PubMed  CAS  Google Scholar 

  • Lahaie I, Hardy P, Hou X, Hassessian H, Asselin P, Lachapelle P, Almazan G, Varma DR, Morrow JD, Roberts LJ 2nd, Chemtob S (1998) A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2 alpha on retinal vessels. Am J Physiol 274:R1406–R1416

    PubMed  CAS  Google Scholar 

  • Lobo IB, Hoult JR (1994) Groups I, II and III extracellular phospholipases A2: selective inhibition of group II enzymes by indomethacin but not other NSAIDs. Agents Actions 41:111–113

    Article  PubMed  CAS  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ 2nd (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    Article  PubMed  CAS  Google Scholar 

  • Morrow JD, Minton TA, Mukundan CR, Campbell MD, Zackert WE, Daniel VC, Badr KF, Blair IA, Roberts LJ 2nd (1994) Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. J Biol Chem 269:4317–4326

    PubMed  CAS  Google Scholar 

  • Morrow JD, Awad JA, Wu A, Zackert WE, Daniel VC, Roberts LJ 2nd (1996) Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J Biol Chem 271:23185–23190

    Article  PubMed  CAS  Google Scholar 

  • Myatt L, Cui X (2004) Oxidative stress in the placenta. Histochem Cell Biol 122:369–382

    Article  PubMed  CAS  Google Scholar 

  • Oliveira L, Stallwood NA, Crankshaw DJ (2000) Effects of some isoprostanes on the human umbilical artery in vitro. Br J Pharmacol 129:509–514

    Article  PubMed  CAS  Google Scholar 

  • Sametz W, Prasthofer S, Wintersteiger R, Juan H (1999) Vascular effects of isoprostanes after endothelial damage. Prostaglandins Leukot Essent Fat Acids 61:369–372

    Article  CAS  Google Scholar 

  • Sardi SP, Perez H, Antunez P, Rothlin RP (1997) Bradikinin B1 receptors in human umbilical vein. Eur J Pharmacol 321:33–38

    Article  PubMed  CAS  Google Scholar 

  • Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271:33157–33160

    Article  PubMed  CAS  Google Scholar 

  • Taber DF, Morrow JD, Roberts LJ 2nd (1997) A nomenclature system for the isoprostanes. Prostaglandins 53:63–67

    Article  PubMed  CAS  Google Scholar 

  • Tazzeo T, Miller J, Janssen LJ (2003) Vasoconstrictor responses, and underlying mechanisms, to isoprostanes in human and porcine bronchial arterial smooth muscle. Br J Pharmacol 140:759–763

    Article  PubMed  CAS  Google Scholar 

  • Wagner RS, Weare C, Jin N, Mohler ER, Rhoades RA (1997) Characterization of signal transduction events stimulated by 8-epi-prostaglandin(PG)F2 alpha in rat aortic rings. Prostaglandins 54:581–599

    Article  PubMed  CAS  Google Scholar 

  • Wilson SH, Best PJ, Lerman LO, Holmes DR Jr, Richardson DM, Lerman A (1999) Enhanced coronary vasoconstriction to oxidative stress product, 8-epi-prostaglandinF2 alpha, in experimental hypercholesterolemia. Cardiovasc Res 44:601–607

    Article  PubMed  CAS  Google Scholar 

  • Yura T, Fukunaga M, Khan R, Nassar GN, Badr KF, Montero A (1999) Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. Kidney Int 56:471–478

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the Instituto Médico de Obstetricia (Buenos Aires) for their efforts in providing umbilical tissues. This research was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICT 05-14214, Argentina) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; PIP 5799, Argentina). Federico Manuel Daray is a research fellow of the Agencia Nacional de Promoción Científica y Tecnológica. Facundo Germán Pelorosso is a research fellow of the Universidad de Buenos Aires (UBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Pedro Rothlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daray, F.M., Colombo, J.R., Kibrik, J.R. et al. Involvement of endothelial thromboxane A2 in the vasoconstrictor response induced by 15-E2t-isoprostane in isolated human umbilical vein. Naunyn-Schmied Arch Pharmacol 373, 367–375 (2006). https://doi.org/10.1007/s00210-006-0074-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0074-1

Keywords

Navigation