Skip to main content
Log in

Metabolism of propafenone and verapamil by cryopreserved human, rat, mouse and dog hepatocytes: comparison with metabolism in vivo

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

In the present study we examined the metabolism of [14C]propafenone (P) and [14C]verapamil (V) using cryopreserved human, dog (Beagle), rat (Sprague-Dawley) and mouse (NMRI) hepatocytes. The percentage ratios of the metabolites were identified after extraction by HPLC with UV and radioactivity detection. Phase-II metabolites were cleaved using β-glucuronidase. Metabolism of the drugs by cryopreserved hepatocytes was compared with that in the respective species in vivo.

All phase-I and -II metabolites known from in vivo experiments: 5-hydroxy-P (5-OH-P); 4′-hydroxy-P (4′-OH-P); N-despropyl-P (NdesP) and the respective glucuronides, were identified after incubation with cryopreserved hepatocytes. Interspecies differences were observed concerning the preferential position of propafenone hydroxylation: 5-OH-P made up 91, 51, 16 and 3% of the total metabolites after incubation with cryopreserved human (n=4), dog (n=3), rat (n=3) and mouse (n=4) hepatocytes respectively. These results are consistent with interspecies differences known from in vivo experiments. The metabolism of V is more complex than that of P. Nevertheless, all phase-I metabolites known from in vivo experiments and the expected glucuronides were identified after incubation with cryopreserved hepatocytes from all four species. As expected from the results of in vivo experiments, there were no major interspecies differences with respect to phase-I metabolites although the conjugation of verapamil phase-I metabolites by cryopreserved canine hepatocytes was much weaker than for the other species.

In conclusion, phase-I and phase-II metabolism of P and V was evaluated using hepatocytes in vitro. All of the relevant interspecies differences known from in vivo experiments were identified after short-term incubation with cryopreserved hepatocytes in suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akrawi M, Rogiers V, Vandenberghe Y, Palmer CN, Vercruysse A, Shephard EA, Phillips IA (1993) Maintenance and induction in co-cultured rat hepatocytes of components of cytochrome P450-mediated monooxygenase. Biochem Pharmacol 45:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Aldor E, Heeger H (1976) Propafenon—ein neues Antiarrhythmikum. Dtsch Med Wochensschr 101:1318–1322

    CAS  Google Scholar 

  • Beerheide W, Mach MA von, Ringel M, Fleckenstein C, Schumann S, Renzing N, Hildebrandt A, Brenner W, Jensen O, Gebhard S, Reifenberg K, Bender J, Oesch F, Hengstler JG (2002) Downregulation of beta2-microglobulin in human cord blood somatic stem cells after transplantation into livers of SCID-mice: an escape mechanism of stem cells? Biochem Biophys Res Commun 294:1052–1063

    Article  CAS  PubMed  Google Scholar 

  • Botsch S, Gautier JC, Beaune P, Eichelbaum M, Kroemer H (1993) Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol 43:120–126

    CAS  PubMed  Google Scholar 

  • Busse D, Cosme J, Beaune P, Kroemer HK, Eichelbaum M (1995) Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn Schmiedberg’s Arch Pharmacol 353:116–121

    Google Scholar 

  • Cai WM, Chen B, Cai MH, Chen Y, Zhang YD (1999) The influence of CYP2D6 activity on the kinetics of propafenone enantionmers in Chinese subjects. Br J Clin Pharmacol 47:553–556

    Article  CAS  PubMed  Google Scholar 

  • De Rienzo F, Fanelli F, Menziani MC, De Benedetti PG (2000) Theoretical investigation of substrate specificity for cytochromes P450 IA2, P450 IID6 and P450 IIIA4. J Comput Aided Mol Des 14:96–116

    Google Scholar 

  • DeSousa G, Florence N, Valles B, Coassolo P, Rahmani R (1995) Relationships between in vitro and in vivo biotransformation of drugs in humans and animals: pharmaco-toxicological consequences. Cell Biol Toxicol 11:147–153

    CAS  PubMed  Google Scholar 

  • Diener B, Utesch D, Beer N, Dürk H, Oesch F (1993) A method for the cryopreservation of the liver parenchymal cells for studies of xenobiotics. Cryobiology 30:116–127

    Article  CAS  PubMed  Google Scholar 

  • Dilger K, Greiner B, Fromm MF, Hofmann U, Kroemer HK, Eichelbaum M (1999) Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 9:551–559

    Google Scholar 

  • Dilger K, Meisel P, Hofmann U, Eichelbaum M (2000) Disposition of propafenone in a poor metabolizer of CYP2D6 with Gilbert’s syndrome. Ther Drug Monit 22:366–368

    Article  CAS  PubMed  Google Scholar 

  • Eichelbaum M, Remberg G, Schomerus M, Dengler HJ (1979) The metabolism of d,l-[14C]verapamil in man. Drug Metab Dispos 7:145–148

    CAS  PubMed  Google Scholar 

  • Gebhardt R, Hengstler JG, Müller D, Glöckner R, Buenning P, Laube B, Schmelzer E, Martina Ullrich, Utesch D, Hewitt N, Ringel M, Reder-Hilz B, Bader A, Langsch A, Koose T, Burger HJ, Maas J, Oesch F (2003) New hepatocyte in vitro systems for drug metabolism: Metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures, Drug Metab Rev 35 145–213

    Google Scholar 

  • Guillouzo A, Rialland L, Fautrel A, Guyomard C (1999) Survival and function of isolated hepatocytes after cryopreservation. Chem Biol Interact 121:7–16

    Article  CAS  PubMed  Google Scholar 

  • Hege HG, Hollmann M, Kaumeier S, Lietz H (1984a) The metabolic fate of 2H-labelled propafenone in man. Eur J Drug Metab Pharmacokinet 9:41–55

    CAS  PubMed  Google Scholar 

  • Hege HG, Lietz H, Weymann J (1984b) Studies on the metabolism of propafenone: 2nd Comm.: studies on the biotransformation in the dog. Arzneimittelforschung 34:972–979

    CAS  PubMed  Google Scholar 

  • Hege HG, Lietz H, Weymann J (1986) Studies on the metabolism of propafenone, 3rd Comm.: isolation of the conjugated metabolites in the dog and identification using fast atom bombardment mass spectrometry. Arzneimittlelforschung 36:467–474

    CAS  Google Scholar 

  • Hengstler JG, Van den Burg B, Steinberg P, Oesch F (1999) Interspecies differences in cancer susceptibility and toxicity. Drug Metab Rev 31:917–970

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Utesch D, Steinberg P, Ringel M, Swales N, Biefang K, Platt KL, Diener B, Böttger T, Fischer T, Oesch F (2000a) Cryopreserved primary hepatocytes as an in vitro model for the evaluation of drug metabolism and enzyme induction. Drug Metab Rev 32:81–118

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Ringel M, Biefang K, Hammel S, Milbert U, Gerl M, Klebach M, Diener B, Platt KL, Böttger T, Steinberg P, Oesch F (2000b) Cultures with cryopreserved hepatocytes: applicability for studies of enzyme induction. Chem Biol Interact 125:51–73

    Article  CAS  PubMed  Google Scholar 

  • Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifenrath M, Gotte W, Jung D, Mayer-Popken O, Fuchs J, Gebhard S, Bienfait HG, Schlink K, Dietrich C, Faust D, Epe B, Oesch F (2003) Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 24 63–73

    Google Scholar 

  • Jenden DJ (1991) Difficulties in using animal data to predict pharmacological response in man. Neurosci Biobehav Rev 15:105–107

    CAS  PubMed  Google Scholar 

  • Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, Tomkinson NCO (2000) The pregnane x receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14:27–39

    CAS  PubMed  Google Scholar 

  • Karim N, Allmeling C, Hengstler JG, Haverich A, Bader A (2000) Diazepam metabolism and albumin secretion of porcine hepatocytes in collagen-sandwich after cryopreservation. Biotechnol Lett 22:1647–1652

    Article  CAS  Google Scholar 

  • Kocarek TA, Schuetz EG, Strom SC, Fischer RA, Guzlian PS (1995) Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 23:415–421

    CAS  PubMed  Google Scholar 

  • Kroemer HK, Mikus G, Kronbach T, Meyer UA, Eichelbaum M (1989) In vitro characterization of the human cytochrome P450 involved in polymorphic oxidation of propafenone. Clin Pharmacol Ther 45:28–33

    CAS  PubMed  Google Scholar 

  • Kroemer HK, Gautier JC, Beaune P, Henderson C, Wolf CR, Eichelbaum M (1993) Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn-Schmiedberg’s Arch Pharmacol 348:332–337

    Google Scholar 

  • Lewis DFV, Dickins M, Eddershaw PJ, Tarbit MH, Goldfarb PS (1999) Cytochrome P450 substrate specificities, substrate structural templates and enzyme active site geometries. Drug Metab Drug Interact 15:1–49

    CAS  Google Scholar 

  • Li AP, Gorycki PD, Hengstler JG, Kedderis GL, Koebe HG, Rhamani R, De Sousas G (1999a) Present status of the application of cryopreserved hepatocytes in the evaluation of xenobiotics: consensus of an internal expert panel. Chem Biol Interact 121:117–123

    Article  CAS  PubMed  Google Scholar 

  • Li AP, Lu C, Brent JA, Pham C, Fackett A, Ruegg CE, Silber PM (1999b) Cryopreserved human hepatocytes: characterization of drug-metabolizing enzyme activities and applications in higher throughput screening assays for hepatotoxicity, metabolic stability, and drug-drug interaction potential. Chem Biol Interact 121:17–35

    Article  CAS  PubMed  Google Scholar 

  • Mach MA von (2002) Primary biliary cirrhosis in classmates: coincidence or enigmatic environmental influence? EXCLI J 1:1–6

    Google Scholar 

  • Mach MA von, Schlosser J, Weiland M, Feilen PJ, Ringel M, Hengstler JG, Weilemann LS, Beyer J, Kann P, Schneider S (2003a) Size of pancreatic islets of Langerhans: a key parameter for viability after cryopreservation. Acta Diabetol 40:123–129

    PubMed  Google Scholar 

  • Mach MA von, Schlosser J, Weiland M, Feilen PJ, Ringel M, Hengstler JG, Weilemann LS, Beyer J, Kann P, Schneider S (2003b) Cryopreservation of islets of Langerhans: optimization of protocols. EXCLI J 2:6–21

    Google Scholar 

  • McIlhenny HM (1971) Metabolism of [14C]verapamil. J Med Chem 14:1178–1184

    CAS  PubMed  Google Scholar 

  • Nedelcheva V, Gut I (1994) P450 in the rat and man: methods of investigation, substrate specificities and relevance to cancer. Xenobiotica 24:1151–1175

    CAS  PubMed  Google Scholar 

  • Neidlein R, Wu M, Hege HG (1988) Synthesis of glucucronides of propafenone and 5-hydroxypropafenone by sepharose-bound uridine 5′-diphosphoglucuronyl-transferase. Arzneimittelforschung 38:1257–1262

    CAS  PubMed  Google Scholar 

  • Osterod M, Hollenbach S, Hengstler JG, Barnes DE, Lindahl T, Epe B (2001) Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (ogg1) deficient mice. Carcinogenesis 22:1459–1463

    Article  CAS  PubMed  Google Scholar 

  • Osterod M, Larsen E, Le Page F, Hengstler JG, Van Der Horst GT, Boiteux S, Klungland A, Epe B (2002) A global DNA repair mechanism involving the Cockayne syndrome B (CSB) gene product can prevent the in vivo accumulation of endogenous oxidative DNA base damage. Oncogene 28:8232–8239

    Article  Google Scholar 

  • Puech P, Gagnol JP (1990) Class IC drugs: propafenone and flecainide. Cardiovasc Ther 4:549–553

    Google Scholar 

  • Ringel M, Oesch F, Bader A, Gerl M, Klebach M, Quint M, Tanner B, Dillenburg W, Böttger T, Hengstler JG (2002) Permissive and suppressive effects of dexamethasone on enzyme induction in hepatocyte cultures. Xenobiotica 32 653–666

    Google Scholar 

  • Sandström R, Karlsson A, Knutson L, Lennernäs H (1998) Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm Res 15:856–862

    Article  PubMed  Google Scholar 

  • Sandström R, Knutson TW, Knutson L, Jansson B, Lennernäs H (1999) The effect of ketoconazole on the jejunal permeability and CYP3A metabolism of (R/S)-verapamil in humans. Br J Clin Pharmacol 48:189–189

    Google Scholar 

  • Schomerus M, Spiegelhalder B, Stieren B, Eichelbaum M (1976) Physiological disposition of verapamil in man. Cardiovasc Res 10:605–612

    CAS  PubMed  Google Scholar 

  • Sharer JE, Shipley LA, Vandenbranden MR, Binkley SN, Wrighton SA (1995) Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab Dispos 23:1231–1241

    CAS  PubMed  Google Scholar 

  • Steinberg P, Fischer T, Kinlies S, Biefang K, Oesch F, Böttger T, Bulitta C (1999) Drug metabolizing capacity of cryopreserved human, rat, and mouse liver parenchymal cells in suspension. Drug Metab Dispos 27:1415–1422

    CAS  PubMed  Google Scholar 

  • Swales NJ, Utesch D (1998) Metabolic activity of fresh and cryopreserved dog hepatocytes. Xenobiotica 28:937–948

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Li Q, McKay G, Semple HA (1998) Identification and determination of phase I metabolites of propafenone in rat liver perfusate. J Pharmacol Biomed Anal 16:991–1003

    Article  CAS  Google Scholar 

  • Tanner B, Beerheide W, Jensen O, Mach MA von, Ringel M, Fleckenstein C, Schumann S, Renzing N, Hildebrand A, Neubert S, Glawatz C, Hengstler JG (2003) Isolation and transplantation of human mesenchymal stem cells from cord blood. Geburtshilfe Frauenheilkunde 63:1040–1046

    Article  CAS  Google Scholar 

  • Tracy TS, Korzekwa KR, Gonzalez FJ, Wainer IW (1999) Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. J Clin Pharmacol 47:545–552

    Article  CAS  PubMed  Google Scholar 

  • Walle T, Oatis JE Jr, Walle UK, Knapp DR (1982) New ring hydroxylated metabolites of propranolol: species differences and stereospecific 7-hydroxylation. Drug Metab Dispos 10:122–127

    CAS  PubMed  Google Scholar 

  • Watson PB, Wrighton SA, Schuetz EG, Molowa DT, Guzelian PS (1987) Identification of glucocorticoid-inducible cytochromes P450 in the intestinal mucosa of rats and man. J Clin Invest 80:1029–1036

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Reder-Hilz.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reder-Hilz, B., Ullrich, M., Ringel, M. et al. Metabolism of propafenone and verapamil by cryopreserved human, rat, mouse and dog hepatocytes: comparison with metabolism in vivo. Naunyn-Schmiedeberg's Arch Pharmacol 369, 408–417 (2004). https://doi.org/10.1007/s00210-004-0875-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-004-0875-z

Keywords

Navigation