Skip to main content
Log in

Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Although many β1-receptor antagonists and β2-receptor agonists have been used in pharmacotherapy for many years their pharmacological properties at all three known subtypes of β-adrenergic receptors are not always well characterized. The aim of this study was, therefore, to provide comparative binding characteristics of agonists (epinephrine, norepinephrine, isoproterenol, fenoterol, salbutamol, salmeterol, terbutalin, formoterol, broxaterol) and antagonists (propranolol, alprenolol, atenolol, metoprolol, bisoprolol, carvedilol, pindolol, BRL 37344, CGP 20712, SR 59230A, CGP 12177, ICI 118551) at all three subtypes of human β-adrenergic receptors in an identical cellular background. We generated Chinese hamster ovary (CHO) cells stably expressing the three β-adrenergic receptor subtypes at comparable levels. We characterized these receptor subtypes and analyzed the affinity of routinely used drugs as well as experimental compounds in competition binding studies, using the non-selective antagonist 125I-cyanopindolol as a radioligand. Furthermore, we analyzed the β-receptor-mediated adenylyl cyclase activity in isolated membranes from these cell lines. The results from our experiments show that all compounds exhibit distinct patterns of selectivity and activity at the three β-receptor subtypes. In particular, a number of β2- or β3-receptor agonists that are inverse agonists at the other subtypes were identified. In addition, β1-receptor antagonists with agonistic activity at β2- and β3-receptors were found. These specific mixtures of agonism, antagonism, and inverse agonism at different subtypes may have important implications for the therapeutic use of the respective compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Berkin KE, Ball SG (2001) Essential hypertension: the heart and hypertension. Heart 86:467–475

    Article  CAS  PubMed  Google Scholar 

  • Blin N, Camoin L, Maigret B, Strosberg AD (1993) Structural and conformational features determining selective signal transduction in the β3-adrenergic receptor. Mol Pharmacol 44:1094–1104

    CAS  PubMed  Google Scholar 

  • Bouvier M, Hnatowich M, Collins S, Kobilka BK, Deblasi A, Lefkowitz RJ, Caron MG (1988) Expression of a human cDNA encoding the beta 2-adrenergic receptor in Chinese hamster fibroblasts (CHW): functionality and regulation of the expressed receptor. Mol Pharmacol 33:122–139

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brodde OE (1993) Beta-adrenoceptors in cardiac disease. Pharmacol Ther 60:405–443

    Article  CAS  PubMed  Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–689

    PubMed  Google Scholar 

  • Candelore MR, Deng L, ToTa L, Xiao-Ming G, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE (1999) Potent and selective human β3-adrenergic receptor antagonists. J Pharmacol Exp Ther 290:649–655

    PubMed  Google Scholar 

  • Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    CAS  PubMed  Google Scholar 

  • Cheng Y-C, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • Conti P, Dallanoce C, De Amici M, De Micheli C, Klotz K-N (1998) Synthesis of new Δ2-isoxazoline derivatives and their pharmacological characterization as β-adrenergic receptor antagonists. Bioorg Med Chem 6:401–408

    Article  CAS  PubMed  Google Scholar 

  • Del Carmine R, Ambrosio C, Sbraccia M, Cotecchia S, Ijzerman AP, Costa T (2002) Mutations inducing divergent shifts of constitutive activity reveal different modes of binding among catecholamine analogues to the β2-adrenergic receptor. Br J Pharmacol 135:1715–1722

    PubMed  Google Scholar 

  • De Lean A, Hancock AA, Lefkowitz RJ (1982) Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol Pharmacol 21:5–16

    PubMed  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245:1118–1121

    CAS  PubMed  Google Scholar 

  • Freund S, Ungerer M, Lohse MJ (1994) A1 adenosine receptors expressed in CHO-cells couple to adenylyl cyclase and phospholipase C. Naunyn-Schmiedebergs Arch Pharmacol 350:49–56

    Google Scholar 

  • Frielle, T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the cDNA for the human β1-adrenergic receptor. Proc Natl Acad Sci USA 84:7290–7294

    PubMed  Google Scholar 

  • Giacobino J-P (1995) β3-Adrenoceptor: an update. Eur J Endocrinol 132:377–385

    CAS  PubMed  Google Scholar 

  • Gille E, Lemione H, Ehle B, Kaumann AJ (1985) The affinity of (-)-propranolol for β1 and β2 adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. Naunyn-Schmiedeberg’s Arch Pharmacol 331:60–70

  • Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53:319–356

    CAS  PubMed  Google Scholar 

  • Jakobs KH, Saur W, Schultz G (1976) Reduction of adenylyl cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J Cyclic Nucleotide Res 2:381–392

    CAS  PubMed  Google Scholar 

  • Klotz K-N, Cristalli G, Grifantini M, Vittori S, Lohse MJ (1985) Photoaffinity labeling of A1-adenosine receptors. J Biol Chem 260:14659–14664

    CAS  PubMed  Google Scholar 

  • Klotz K-N, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedebergs Arch Pharmacol 357:1–9

    Google Scholar 

  • Kotlikoff MI, Kamm, KE (1996) Molecular mechanisms of β-adrenergic relaxation of airway smooth muscle. Annu Rev Physiol 58:115–141

    Article  CAS  PubMed  Google Scholar 

  • Krief S, Lonnqvist F, Raimbault S, Baude B, Van Spronsen A, Arner P, Strosberg AD, Ricquier D, Emorine LJ (1993) Tissue distribution of beta 3-adrenergic receptor mRNA in man. J Clin Invest 91:344–349

    CAS  PubMed  Google Scholar 

  • Krum H (2003) Beta-blockers in chronic heart failure: what have we learned? What do we still need to know? Curr Opin Pharmacol 3:168–174

    Article  CAS  PubMed  Google Scholar 

  • Lattion AL, Abuin L, Nenniger-Tosato M, Cotecchia S (1999) Constitutively active mutants of the β1-adrenergic receptor. FEBS Lett 457:302–306

    CAS  PubMed  Google Scholar 

  • Levin MC, Marullo S, Muntaner O, Andersson B, Magnusson Y (2002) The myocardium-protective Gly-49 variant of the β1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem 277:30429–30435

    Article  CAS  PubMed  Google Scholar 

  • Liggett SB (1992) Functional properties of the rat and human β3-adrenergic receptors: differential agonist activation of recombinant receptors in Chinese Hamster Ovary cells. Mol Pharmacol 42:634–637

    CAS  PubMed  Google Scholar 

  • Lohse MJ (1992) Stable overexpression of human beta 2-adrenergic receptors in mammalian cells. Naunyn-Schmiedebergs Arch Pharmacol 345:444–451

    Google Scholar 

  • Michel MC (1991) β-Adrenergic receptors. In: Doods HN, van Meel JCA (eds) Receptor data for biological experiments. Ellis Horwood, New York, pp 19–22

  • Neve KA, McGonigle P, Molinoff PB (1986) Quantitative analysis of the selectivity of radioligands for subtypes of Beta adrenergic receptors. J Pharmacol Exp Ther 238:46–53

    CAS  PubMed  Google Scholar 

  • Samama P, Pei G, Costa T, Cotecchia S, Lefkowitz RJ (1994) Negative antagonists promote an inactive conformation of the β2-adrenergic receptor. Mol Pharmacol 45:390–394

    CAS  PubMed  Google Scholar 

  • Schofield PR, Rhee LM, Peralta EG (1987) Primary structure of the human beta-adrenergic receptor gene. Nucleic Acids Res 15:3636

    CAS  PubMed  Google Scholar 

  • Steinle JJ, Booz GW, Meininger CJ, Day JNE, Granger HJ (2003) β3-Adrenergic receptor regulate retinal endothelial cell migration and proliferation. J Biol Chem 278:20681–20686

    Article  CAS  PubMed  Google Scholar 

  • Tate KM, Briend-Sutren MM, Emorine LJ, Delavier-Klutchko C, Marullo S, Strosberg AD (1991) Expression of three human β-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur J Biochem 196:357–361

    CAS  PubMed  Google Scholar 

  • Waldeck B (2002) β-Adrenoceptor agonists and asthma—100 years of development. Eur J Pharmacol 445:1–12

    Article  CAS  PubMed  Google Scholar 

  • Whaley BS, Yuan N, Birnbaumer L, Clark RB, Barber R (1994) Differential expression of the β-adrenergic receptor modifies agonist stimulation of adenylyl cyclase: a quantitative evaluation. Mol Pharmacol 45:481–489

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Martina Fischer and Mr. Nico Falgner for technical assistance. This study was supported by the BIOMED 2 program “Inverse agonism. Implications for drug design” and the Leibnitz award of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-N. Klotz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, C., Leitz, M.R., Oberdorf-Maass, S. et al. Comparative pharmacology of human β-adrenergic receptor subtypes—characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg's Arch Pharmacol 369, 151–159 (2004). https://doi.org/10.1007/s00210-003-0860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-003-0860-y

Keywords

Navigation