Skip to main content
Log in

Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract.

The effects of acamprosate on the in vivo dopamine extracellular levels in the nucleus accumbens and the involvement of N-methyl-D-aspartate (NMDA) receptors in these effects were investigated. Microdialysis in freely moving rats was used to assess dopamine levels before and during simultaneous perfusion of acamprosate and/or different agonists or antagonists of NMDA receptors. Perfusion with acamprosate at concentrations of 0.5 and 5 mM provoked a concentration-dependent increase in extracellular dopamine in nucleus accumbens. The lowest concentration of acamprosate assayed (0.05 mM) had no effect on dopamine levels. Infusion of NMDA (25 and 500 µM) and the glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxilic acid (PDC) (0.5 mM) into the NAc caused a significant increase in DA, whereas acamprosate (0.05 mM) co-infusion with these compounds blocked or attenuated the NMDA and PDC-induced increases in DA levels. Co-infusion of the selective antagonist of NMDA receptors, DL-2-amino-5-phosphonopentanoic acid (AP5) (400 µM) with acamprosate (0.5 mM), did not reduce the increase of DA levels induced by acamprosate. These results demonstrate that acamprosate is able to modulate DA extracellular levels in NAc via NMDA receptors and suggest that acamprosate acts as an antagonist of NMDA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Acquas E, Meloni M, Di Chiara G (1993) Blockade of delta-opioid receptors in the nucleus accumbens prevents ethanol-induced stimulation of dopamine release. Eur J Pharmacol 230:239–241

    CAS  PubMed  Google Scholar 

  • Al Qatari M, Bouchenafa O, Littleton J (1998) Mechanism of action of acamprosate. II. Ethanol dependence modifies effects of acamprosate on NMDA receptors binding in membranes from rat cerebral cortex. Alcohol Clin Exp Res 22:810–814

    PubMed  Google Scholar 

  • Allgaier C, Franke H, Sobottka H, Scheibler P (2000) Acamprosate inhibits Ca2+ influx mediated by NMDA receptors and voltage-sensitive Ca2+ channels in cultured rat mesencephalic neurones. Naunyn-Schmiedebergs Arch Pharmacol 362:440–443

    CAS  PubMed  Google Scholar 

  • Berton F, Francesconi WG, Madamba SG, Zieglgänsberger W, Siggins GR (1998) Acamprosate enhances N-methyl-D-aspartate receptor-mediated neurotransmission but inhibits presynaptic GABAB receptors in nucleus accumbens neurons. Alcohol Clin Exp Res 22:183–191

    CAS  PubMed  Google Scholar 

  • Boismare F, Daoust M, Moore N, Saligaut C, Lhuintre JP, Chrtien P, Durlach J (1984) A homotaurine derivative reduces the voluntary ethanol intake of ethanol by rats: are cerebral GABA receptors involved? Pharmacol Biochem Behav 21:787–789

    CAS  PubMed  Google Scholar 

  • Cornish JL, Kalivas PW (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20:RC89

    PubMed  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine seeking behavior. Neuroscience 93:1359–1367

    Google Scholar 

  • Czachowski CL, Legg BH, Samson HH (2001) Effects of acamprosate on ethanol seeking and self-administration in the rat. Alcohol Clin Exp Res 25:344–350

    Google Scholar 

  • Diana M, Pistis M, Muntoni A, Carboni S, Gessa GL, Rossetti Z (1993) Profound decrement of dopaminergic activity during alcohol withdrawal: electrophysiological and biochemical evidence. Proc Natl Acad Sci USA 90:7966–7969

    Google Scholar 

  • Fadda F, Rossetti Z (1998) Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Prog Neurobiol 56:385–431

    CAS  PubMed  Google Scholar 

  • Gonzales R, Weiss F (1998) Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dyalisate dopamine levels in the nucleus accumbens. J Neurosci 18:10663–10671

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Vermeulen-Van der Zee E, Te Kortschot A, Witter MP (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin. Neuroscience 23:103–120

    Google Scholar 

  • Herz A (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology 129:99–111

    CAS  PubMed  Google Scholar 

  • Heyser CJ, Schulteis G, Durbin P, Koob GF (1998) Chronic acamprosate eliminates the alcohol deprivation effect while having limited effects on baseline responding for ethanol in rats. Neuropsychopharmacology 18:125–133

    Article  CAS  PubMed  Google Scholar 

  • Heyser CJ, Roberts AJ, Schulteis G, Koob GF (1999) Central administration of an opiate antagonist decreases oral ethanol self-administration. Alcohol Clin Exp Res 23:1468–1476

    Google Scholar 

  • Hoffman P, Tabakoff B (1996) Alcohol dependence: a commentary on mechanisms. Alcohol Alcohol 31:333–340

    CAS  PubMed  Google Scholar 

  • Hölter SM, Landgraf R, Zieglgänsberger W, Spanagel R (1997) Time course of acamprosate action on operant ethanol self-administration after ethanol deprivation. Alcohol Clin Exp Res 21:862–868

    PubMed  Google Scholar 

  • Imperato A, Honore T, Jensen LH (1990a) Dopamine release in the nucleus accumbens is under glutamatergic control through non-NMDA receptors: a study in freely moving rats. Brain Res 530:223–228

    CAS  PubMed  Google Scholar 

  • Imperato A, Scrocco MG, Bacchi S, Angelucci L (1990b) NMDA receptors and in vivo dopamine release in the nucleus accumbens and caudatus. Eur J Pharmacol 187:555–556

    Article  CAS  PubMed  Google Scholar 

  • Johnson LR, Aylward RLM, Hussain Z, Totterdell S (1994) Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 61:851–865

    CAS  PubMed  Google Scholar 

  • Karreman M, Westerink BHC, Moghaddam B (1996) Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J Neurochem 67:601–607

    CAS  PubMed  Google Scholar 

  • Kelley AE, Domesick VB (1982) The distribution of the projection from hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321–2335

    Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJ (1982) The amygdalostriatal projection in the rat: an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630

    Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184

    PubMed  Google Scholar 

  • Kretschmer BD (1999) Modulation of the mesolimbic dopamine system by glutamate: role of NMDA receptors. J Neurochem 73:839–848

    Article  CAS  PubMed  Google Scholar 

  • Liljequist S (1991) The competitive NMDA receptor antagonist CGP-39551 inhibits ethanol withdrawal seizures. Eur J Pharmacol 192:197–198

    CAS  PubMed  Google Scholar 

  • Lovinger DM (1996) Ethanol and NMDA receptor: implications for intoxication, tolerance dependence and alcoholic brain damage. In: Soyka M (ed) Acamprosate in relapse prevention of alcoholism. Springer, Berlin Heidelberg New York, pp 1–26

  • Naassila M, Hammoumi S, Legrand E, Durbin P, Daoust M (1998) Mechanism of action of acamprosate. I. Characterization of spermidine-sensitive acamprosate binding site in rat brain. Alcohol Clin Exp Res 22:802–809

    CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    CAS  PubMed  Google Scholar 

  • Olive MF, Nannini MA, Ou CJ, Koenig HN, Hodge CW (2002) Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release. Eur J Pharmacol 437:55–61

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

  • Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275–296

    CAS  PubMed  Google Scholar 

  • Rammes G, Mahal B, Putzke J, Parsons C, Spielmanns P, Pestel E, Spanagel R, Zieglgänsberger W, Schadrack J (2001) The anticraving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801. Neuropharmacology 40:749–760

    Google Scholar 

  • Rossetti ZL, Carboni S (1995) Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur J Pharmacol 283:177–183

    Article  CAS  PubMed  Google Scholar 

  • Rossetti ZL, Melis F, Carboni S, Gessa GL (1991) Marked decrease of extraneuronal dopamine after alcohol withdrawal in rats: reversal by MK-801. Eur J Pharmacol 200:371–372

    Article  CAS  PubMed  Google Scholar 

  • Sesack SR, Pickel VM (1992) Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320:145–160

    CAS  PubMed  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242

    PubMed  Google Scholar 

  • Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527

    CAS  PubMed  Google Scholar 

  • Spanagel R, Zieglgänsberger W (1997) Anti-craving compounds for ethanol: new pharmacological tools to study addictive processes. Trends Pharmacol Sci 18:54–59

    CAS  PubMed  Google Scholar 

  • Spanagel R, Holter SM, Allingham K, Landgraf R, Zieglgänsberger W (1996) Acamprosate and alcohol. I. Effects on alcohol intake following alcohol deprivation in the rat. Eur J Pharmacol 305:39–44

    CAS  PubMed  Google Scholar 

  • Stromberg MF, Mackler SA, Volpicelli JR O'Brien CP (2001) Effect of acamprosate and naltrexone, alone or in combination, on ethanol consumption. Alcohol 23:109–116

    Article  CAS  PubMed  Google Scholar 

  • Taber MT, Fibiger HC (1995) Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci 15:3896–3904

    CAS  PubMed  Google Scholar 

  • Taber MT, Baker GB, Fibiger HC (1996) Glutamate receptor agonists decrease extracellular dopamine in the rat nucleus accumbens in vivo. Synapse 24:165–172

    Article  CAS  PubMed  Google Scholar 

  • Taepavarapruk P, Floresco B, Phillips A (2000) Hyperlocomotion and increased dopamine efflux in the rat nucleus accumbens evoked by electrical stimulation of the ventral subiculum: role of ionotropic glutamate and dopamine D1 receptors. Psychopharmacology 151:242–251

    Article  CAS  PubMed  Google Scholar 

  • Weiss F, Porrino LJ (2002) Behavioral neurobiology of alcohol addiction: recent advances and challenges. J Neurosci 22:3332–3337

    CAS  PubMed  Google Scholar 

  • Weiss F, Lorang MT, Bloom FE, Koob GF (1993) Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: genetic and motivational determinants. J Pharmacol Exp Ther 267:250–267

    CAS  PubMed  Google Scholar 

  • Weiss F, Parsons LH, Schulteis G, Hyytiä P, Lorang MT, Bloom FE, Koob GF (1996) Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 16:3474–3485

    CAS  PubMed  Google Scholar 

  • Westerink BHC, Kwint HF, deVries JB (1996) The pharmacology of mesolimbic dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and nucleus accumbens of the rat brain. J Neurosci 16:2606–2611

    Google Scholar 

  • Westerink BHC, Enrico P, Feimann J, deVries JB (1998) The pharmacology of mesocortical dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and prefrontal cortex of the rat brain. J Pharmacol Exp Ther 285:143–154

    CAS  PubMed  Google Scholar 

  • Wright CI, Beijer AVJ, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 16:1877–1893

    CAS  PubMed  Google Scholar 

  • Youngren KD, Daly DA, Moghaddam B (1993) Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J Pharmacol Exp Ther 264:289–293

    CAS  PubMed  Google Scholar 

  • Zeise ML, Kasparov S, Capogna M, Zieglgänsberger W (1993) Acamprosate (calcium acetylhomotaurinate) decreases postsynaptic potentials in the rat neocortex: possible involvement of excitatory amino acid receptors. Eur J Pharmacol 231:47–52

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements.

This work was supported by funds of Delegación del Gobierno para el Plan Nacional sobre Drogas, Ministerio del Interior, Spain. TZS is a recipient of a grant from Ministerio de Educación, Cultura y Deportes, Spain. MJCC is a recipient of a grant from Delegación del Gobierno para el Plan Nacional sobre Drogas, Ministerio del Interior, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Granero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano-Cebrián, M.J., Zornoza-Sabina, T., Guerri, C. et al. Local acamprosate modulates dopamine release in the rat nucleus accumbens through NMDA receptors: an in vivo microdialysis study. Naunyn-Schmiedeberg's Arch Pharmacol 367, 119–125 (2003). https://doi.org/10.1007/s00210-002-0674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-002-0674-3

Keywords

Navigation